Министерство образования и науки Украины
Харьковский национальный университет радиоэлектроники
Кафедра БМЕ
КУРСОВАЯ РАБОТА
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
по дисциплине Автоматизация обработки и анализа биомедицинской информации
на тему: Обработка электроэнцефалограмм в частотной области
Студент гр.
Руководитель
2009
Харьковский национальный университет радиоэлектроники
Кафедра Биомедицинских электронных устройств и систем
Дисциплина Автоматизация обработки и анализа биомедицинской информации
Специальность Биотехнические и медицинские аппараты и системы
ЗАДАНИЕ
НА КУРСОВОЙ ПРОЕКТ (РАБОТУ)
студента гр.
1. Тема проекта (работы) Обработка электроэнцефалограмм в частотной области
2. Срок подачи студентом завершенной работы_____________
3. Исходные данные к работе: файлы оцифрованной электрэнцефалограммы: eeg_Fp1.txt, eeg_Fp2.txt, eeg_T4.txt, eeg_C3.txt, eeg_P4.txt.
4. Содержание пояснительной записки: Метод электроэнцефалографии, метод анализа ЭЭГ в частотной области, алгоритм анализа электроэнцефалограмм в частотной области, программа анализа ЭЭГ, результаты анализа.
5. Перечень графического материала: алгоритм анализа ЭЭГ в частотной области, результаты анализа ЭЭГ.
6. Дата выдачи задания: 19 февраля 2009 г.
КАЛЕНДАРНЫЙ ПЛАН
Номер | Название этапов курсового проектирования | Срок выполнения этапов проекта | Примечание |
1 | Анализ задания | 19.02.09 – 26.02.09 | |
2 | Ознакомление с литературой | 26.02.09 – 6.03.09 | |
3 | Выбор метода анализа сигнала | 6.03.09 – 13.03.09 | |
4 | Разработка алгоритма | 13.03.09 – 27.03.09 | |
5 | Разработка программного обеспечения | 27.03.09 – 16.04.09 | |
6 | Анализ результатов | 16.04.09 – 27.04.09 | |
7 | Оформление пояснительной записки | 27.04.09 – 24.05.09 | |
8 | Сдача работы на проверку руководителю | 17.06.09 | |
9 | Доработка с учетом замечаний | 17.06.09 – 20.06.09 | |
10 | Защита работы | 20.06.09 | |
РЕФЕРАТ
Пояснительная записка содержит: 28 листов, 12 рисунков, 1 таблица, источников.
Цель курсовой работы: научиться выполнять анализ медико-биологических сигналов с помощью ЭВМ и получение диагностического вывода о норме или патологии заданного сигнала [1].
Объектом исследования являются реальные оцифрованные электроэнцефалограммы здоровых людей.
Заданием курсовой работы является анализ электроэнцефалограмм в частотной области, что включает в себя построение наглядной электроэнцефалограммы с оцифрованных образцов, построение α-ритмов, АЧХ электроэнцефалограмм, периодограмм и спектрограмм α-ритмов.
В ходе выполнения курсовой работы был построен алгоритм обработки данных электроэнцефалограмм во временной области, который позволил создать программу в среде МatLab, осуществляющую анализ ЭЭГ. Данная программа является актуальной с точки зрения автоматизации обработки и анализа биомедицинской информации. Недостатком программы является невозможность осуществления точного 100 %-ного анализа, так как программа жестко привязана к общепринятым нормам спектральной плотности мощности ритмов, в то время как некоторое варьирование этих данных может быть нормой для конкретного человека, а программой может восприниматься как патология.
электроЭНЦЕФАЛограмма, СИГНАЛ, МОЗГ, РИТМЫ, ЧАСТОТНЫЙ анализ
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 Метод электроэнцефалографии
1.1 Отведения и регистрация ЭЭГ
1.2 Электроэнцефалограмма. Ритмы
2 Метод анализа ЭЭГ в частотной области
3 Алгоритм анализа электроэнцефалограмм в частотной области
4 Программа анализа ЭЭГ
ВЫВОДЫ
ПЕРЕЧЕНЬ ССЫЛОК
Приложение А
Приложение Б
Приложение В
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
АЧХ – амплитудно-частотная характеристика
ЭВМ – электронно-вычислительная машина
ЦНС – центральная нервная система
ЭЭГ – электроэнцефалограмма
МПА – межполушарная асимметрия
АКФ – автокорреляционная функция
МП – мембранные потенциалы
БПФ – быстрое преобразование Фурье
ВВЕДЕНИЕ
ЭЭГ - метод регистрации электрической активности (биопотенциалов) головного мозга через неповрежденные покровы головы, позволяющий судить о его физиологической зрелости, функциональном состоянии, наличии очаговых поражений, общемозговых расстройств и их характере.
Метод ЭЭГ перспективен и показателен, что позволяет рассматривать его в области диагностики психических расстройств. Применение математических методов анализа ЭЭГ и внедрение их в практику позволяет автоматизировать и упростить работу врачей. ЭЭГ является составной частью объективных критериев течения исследуемой болезни в общей системе оценок, разработанных для персонального компьютера.
При обработке и вычислении параметров ЭЭГ в компьютерном энцефалографическом комплексе, необходимо разработать модуль анализа основных характеристик электроэнцефалограммы человека на базе алгоритма. Для этого следует изучить ритмы, стандарты описания и обозначения ЭЭГ.
1 МЕТОД ЭЛЕКТРОЭНЦЕФАЛОГРАФИИ
Использование электроэнцефалограммы для изучения функций мозга и целей диагностики основано на знаниях, накопленных при наблюдениях за пациентами с различными поражениями мозга, а также на результатах экспериментальных исследованиях на животных. Весь опыт развития электроэнцефалографии, начиная с первых исследований Ханса Бергера в 1933 г., свидетельствует о том, что определенным электроэнцефалографическим феноменам или паттернам соответствуют определенные состояния мозга и его отдельных систем. Суммарная биоэлектрическая активность, регистрируемая с поверхности головы, характеризует состояние коры головного мозга как в целом, так и ее отдельных областей, а также функциональное состояние глубинных структур разного уровня.
Общие представления о происхождении ЭЭГ. В основе колебаний потенциалов, регистрируемых с поверхности головы в виде ЭЭГ, лежат изменения внутриклеточных мембранных потенциалов (МП) корковых пирамидных нейронов. При изменении внутриклеточного МП нейрона во внеклеточном пространстве, где расположены глиальные клетки, возникает разность потенциалов — фокальный потенциал. Потенциалы, возникающие во внеклеточном пространстве в популяции нейронов, представляют собой сумму таких отдельных фокальных потенциалов. Суммарные фокальные потенциалы могут быть зарегистрированы с помощью электропроводных датчиков от разных структур мозга, от поверхности коры или с поверхности черепа. Напряжение токов головного мозга составляет порядка 10–5 Вольта. ЭЭГ представляет собой запись суммарной электрической активности клеток полушарий мозга.
1.1 Отведения и регистрация ЭЭГ
Отведения биопотенциалов производятся двумя способами: монополярным и биполярным. Монополярный способ отведения производится измерением разности потенциалов, отводимых от одной активной точки – от электрода на поверхности скальпа в соответствующей зоне мозга и другой точки, условно принятой за «индифферентную» (референтный электрод). «Индифферентной» точке чаще принимают мочку уха на которую закрепляется электрод. Реже в качестве индифферентного электрода используют суммарный электрод – обобщенное отведение от всех электродов на скальпе.
При биполярном способе оба электрода, разность потенциалов которых измеряется, локализованы на активной поверхности головы. При исследовании ЭЭГ у больных целесообразно использовать сочетания обоих методов отведения – монополярный и несколько биполярных: отведение от последовательной цепи электродов по парасагиттальной линии (О1 – Р3; Р3 –С3; С3 – F3; F3 –Fp1 и соответствующая цепочка электродов на правом полушарии) последовательной цепи электродов, расположенных по латеральной или нижней линии (O1– Т5; T5 – T3; T3 – F7; F7 – Fp1 и соответствующей цепи справа) в поперечном направлении (O1 – T5, P5 – T5, C3 – T3, F3 – F7, Fp1 – F7 и соответствующих электродов правого полушария), и отведения с саггитальным электродом (каждый из электродов отонсительно сагиттальных). Эту схему отведений можно упростить, избрав наиболее необходимые комбинации в каждом отдельном случае. Когда схема наложения электродов упрощена до 8 точек на скальпе, соответственно меньше отведений можно произвести, однако следует также производить комбинацию монополярных и биполярных отведений, что особенно важно для локализации очага поражения (очага контузии, гематомы) [2].
1.2 Электроэнцефалограмма. Ритмы
Характер ЭЭГ определяется функциональным состоянием нервной ткани, а также протекающими в ней обменными процессами. Нарушение кровоснабжения приводит к подавлению биоэлектрической активности коры больших полушарий. Важной особенностью ЭЭГ является ее спонтанный характер и автономность. Электрическая активность мозга может быть зафиксирована не только в период бодрствования, но и во время сна. Даже при глубокой коме и наркозе наблюдается особая характерная картина ритмических процессов (волн ЭЭГ). В электроэнцефалографии различают четыре основных диапазона: альфа-, бета-, гамма- и тета - волны (рисунок 1.1).
- дельта-волны 0.5-3 колебания в сек
- тета-волны 4-7 колебания в сек
- альфа-волны 8- 13 колебаний в сек
- бета-волны 14-30 колебаний в сек
Рисунок 1.1 – Волновые процессы ЭЭГ
Существование характерных ритмических процессов определяется спонтанной электрической активностью мозга, которая обусловлена суммарной активностью отдельных нейронов. Ритмы электроэнцефалограммы отличаются друг от друга по длительности, амплитуде и форме. Основные компоненты ЭЭГ здорового человека приведены в таблице 1.1. Разбиение на группы является более или менее произвольным, оно не соответствует каким-либо физиологическим категориям.
Таблица 1.1 - Основные компоненты электроэнцефалограммы
Выравнивание в ячейке | Частот, Гц | Состояние человека, соответствующее данному ритму |
α | 8-13 | Покой (глаза закрыты) |
β | 14-30 | Интенсивная умственная или физическая работа |
δ | 1-4 | Глубокий сон |
ϑ | 4-8 | Поверхностный сон |
Альфа-ритм электроэнцефалограммы представляет собой ритмические колебания электрического потенциала с частотой в пределах 8-13 Гц и средней амплитудой 30-70 мкВ. Для временной зависимости соответствующих колебаний характерна амплитудная модуляция. Альфа-ритм выражен, преимущественно, в задних отделах мозга, при закрытых глазах, в состоянии относительного покоя, при максимально возможном расслаблении мышц. Он блокируется при световом раздражении, усилении внимания и умственных нагрузках. При проведении детального анализа структуры ЭЭГ иногда различают быстрые и медленные варианты альфа - ритма. Четко выраже