Более 300 лет тому назад, в 1703 году появилась "Арифметика" Леонтия Филипповича Магницкого (1669—1739) — преподавателя созданной по указу Петра I "Школы математических и навигацких наук".
Математики ушли далеко вперёд по отношению к реальным запросам науки и техники. Они создали формальный аппарат, примерно всемеро превышающий потребности сегодняшней науки и цивилизации в целом.
СодержаниеВведение 11. Теоретическая часть 11.1. Метод Гаусса 11.2. Метод Зейделя 41.3. Сравнение прямых и итерационных методов 62. Практическая часть 7
Классическая задача комбинаторики, ее решение "правилом произведения". Реализация реальных связей между объектами в математических терминах на абстрактных множествах. Решение задач на доказательство тождества, особенности решения системы уравнений.
Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).
Наблюдения силы тяжести на земной поверхности показали, что горные массивы притягивают гораздо слабее, чем следовало бы, если исходить из расчетов притяжения видимыми массами.
Методы вычислительной математики, работа с приближёнными величинами. Понятие абсолютной, предельной абсолютной и относительной погрешности приближённого числа. Выведение формулы предельной абсолютной и относительной погрешностей для заданной функции.