ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ
НОУ ВПО «С.И.Б.У.П.»
Контрольная работа
по дисциплине «Высшая математика»
Вариант 13.
Выполнила студентка
Проверил:
Красноярск, 2008г.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
Задание 1
Коэффициенты использования рабочего времени у двух комбайнов соответственно равны 0,8 и 0,6. Считая, что остановки в работе каждого комбайна возникают случайно и независимо друг от друга, определить относительное время (вероятность: а) работы только одного комбайна; б) простоя обоих комбайнов.
А) Данное событие (работает только один комбайн) есть сумма 2 несовместных событий:
A = B + C,
где B: работает только 1-й (2-й простаивает); C: работает только 2-й (1-й простаивает). Каждое из этих событий есть произведение 2 независимых событий:
B = D
;
C =
E,
где D, E – события, состоящие в том, что 1-й и 2-й комбайны работают;
,
- противоположные им события, т.е. 1-й и 2-й комбайны не работают. Их вероятности:
P (D) = 0,8
P (E) = 0,6
P (
) = 1 – P (D) = 1 – 0,8 = 0,2
P (
) = 1 – P (E) = 1 – 0,6 = 0,4
По теоремам сложения и умножения вероятностей
P (A) = P (B) + P (C) = P (D) P (
) + P (
) P (E) = 0,8 * 0,4 + 0,2 * 0,6 = 0,44
Б) Данное событие (оба комбайна простаивают) есть произведение 2 независимых событий:
F =

По теореме умножения вероятностей
P (F) = P (
) P (
) = 0,2 * 0,4 = 0,08
Задание 2
Вероятность того, что пассажир опоздает к отправлению поезда, равна 0,01. Найти наиболее вероятное число опоздавших из 800 пассажиров и вероятность такого числа опоздавших.
Происходит n = 800 независимых испытаний, в каждом из которых данное событие (опоздание на поезд) происходит с вероятностью p = 0,01. Наиболее вероятное число наступлений события удовлетворяет неравенствам
np – q ≤ k < np + p,
где q = 1 – p = 1 – 0,01 = 0,99
800 * 0,01 – 0,99 ≤ k < 800 * 0,01 + 0,01
7,01 ≤ k < 8,01
k = 8
Так как n велико, p мала, соответствующую вероятность найдем по формуле Пуассона:
Pn (k) = $IMAGE13$,
где a = np = 800 * 0,01 = 8
P800 (8) = $IMAGE14$ = 0,140
Задание 3
На двух автоматических станках производятся одинаковые изделия, даны законы распределения числа бракованных изделий, производимых в течение смены на каждом из них для первого и для второго.
X 0 1 2 Y 0 2
p 0,1 0,6 0,3 p 0,5 0,5
Составить закон распределения случайной величины Z = X + Y числа производимых в течение смены бракованных изделий обоими станками. Составить функцию распределения и построить ее график. Проверить свойство математического ожидания суммы случайных величин.
Величина Z может принимать значения:
0 + 0 = 0
0 + 2 = 2
1 + 0 = 1
1 + 2 = 3
2 + 0 = 2
2 + 2 = 4
Вероятности этих значений (по теоремам сложения и умножения вероятностей):
P (Z = 0) = 0,1 * 0,5 = 0,05
P (Z = 1) = 0,6 * 0,5 = 0,3
P (Z = 2) = 0,1 * 0,5 + 0,3 * 0,5 = 0,2
P (Z = 3) = 0,6 * 0,5 = 0,3
P (Z = 4) = 0,3 * 0,5 = 0,15
Закон распределения:
Z 0 1 2 3 4
p 0,05 0,3 0,2 0,3 0,15
Проверка:
∑ pi = 0,05 + 0,3 + 0,2 + 0,3 + 0,15 = 1.
Функция распределения
F (x) = P (X < x) = $IMAGE15$ = $IMAGE16$
$IMAGE17$
Математические ожидания:
M (x) = ∑ xipi = 0 * 0,1 + 1 * 0,6 + 2 * 0,3 = 1,2
M (y) = ∑ yipi = 0 * 0,5 + 2 * 0,5 = 1
M (z) = ∑ zipi = 0 * 0,05 + 1 * 0,3 + 2 * 0,2 + 3 * 0,3 + 4 * 0,15 = 2,2
M (z) = M (x) + M (y) = 1,2 + 1 = 2,2
Задание 4
Случайная величина X задана функцией распределения
F (x) = $IMAGE18$
Найти: 1) вероятность попадания случайной величины X в интервал (1/3; 2/3); 2) функцию плотности распределения вероятностей f (x); 3) математическое ожидание случайной величины X; 4) построить графики F (x) и f (x).
1) Вероятность попадания случайной величины в интервал (a, b) равна
P (a < X < b) = F (b) – F (a)
P (1/3 < X < 2/3) = F (2/3) – F (1/3) = (2/3)3 – (1/3)3 = 8/27 – 1/27 = 7/27
2) Функция плотности
f (x) = F`(x) = $IMAGE19$
3) Математическое ожидание
M (X) = $IMAGE20$ = $IMAGE21$ = $IMAGE22$ = $IMAGE23$ = ¾ (14 – 04) = ¾
4) Графики:
$IMAGE24$
$IMAGE25$
Задание 5
Текущая цена акции может быть смоделирована с помощью нормального закона распределения с математическим ожиданием a = 26 и средним квадратическим отклонением σ = 0,7. Требуется: а) записать функцию плотности вероятности случайной величины X – цены акции и построить ее график; б) найти вероятность того, что случайная величина X примет значение, принадлежащее интервалу (25,2; 26,8); в) найти вероятность того, что абсолютная величина |X – 26| окажется меньше ε = 0,5.
А) Функция плотности нормального распределения имеет вид
f (x) = $IMAGE26$ = $IMAGE27$ = $IMAGE28$
$IMAGE29$
Б) Вероятность того, что нормальная величина примет значение из интервала (α; β), равна
P (α < X < β) = $IMAGE30$ - $IMAGE31$ = $IMAGE32$ - $IMAGE33$ = Ф (1,14) – Ф (-1,14) = 0,3735 + 0,3735 = 0,747
Значения функции Лапласа Ф (x) = $IMAGE34$берем из таблиц.
В) Вероятность того, что отклонение нормальной величины от математического ожидания не превышает ε, равна
P (|X – a| < ε) = $IMAGE35$
P (|X – 26| < 0,5) = $IMAGE36$ = 2Ф (0,714) = 2 * 0,2611 = 0,5222
СТАТИСТИКА
Задание 1
В задаче приведена выборка, извлеченная из соответствующей генеральной совокупности. Требуется: 1) по несгруппированным данным найти выборочную среднюю; 2) найти доверительный интервал для оценки неизвестного математического ожидания признака X генеральной совокупности (генеральной средней), если признак X распределен по нормальному закону; известны γ = 0,98 – надежность и σ = 200 – среднее квадратическое отклонение; 3) составить интервальное распределение выборки с шагом h = 200, взяв за начало первого интервала x1 = 700; 4) построить гистограмму частот; 5) дать экономическую интерпретацию полученных результатов.
Проведено выборочное обследования объема промышленного производства за 16 месяцев и получены следующие результаты (тыс. руб.):
750; 950; 1000; 1050; 1050; 1150; 1150; 1150; 1200; 1200; 1250; 1250; 1350; 1400; 1400; 1550
1) Выборочная средняя
$IMAGE37$ = $IMAGE38$ = (750 + 950 + 1000 + 1050 + 1050 + 1150 + 1150 + 1150 + 1200 + 1200 + 1250 + 1250 + 1350 + 1400 + 1400 + 1550) / 16 = 18850 / 16 = 1178,1 тыс. руб.
2) Доверительный интервал
$IMAGE37$ - $IMAGE40$ < a < $IMAGE37$ + $IMAGE40$,
где Ф (t) = γ / 2 = 0,98 / 2 = 0,49. По таблице функции Лапласа находим: t = 2,32.
1178,1 - $IMAGE43$ < a < 1178,1 + $IMAGE43$
1178,1 – 116,3 < a < 1178,1 + 116,3
1061,8 < a < 1294,4 тыс. руб.
3) Подсчитаем границы интервалов:
x2 = x1 + h = 700 + 200 = 900 и т.д.
Подсчитаем частоты интервалов (т.е. количество значений объема производства, попавших в данный интервал). Интервальное распределение выборки:
Интервал | Частоты |
(700; 900) | 1 |
(900; 1100) | 4 |
(1100; 1300) | 7 |
(1300; 1500) | 3 |
(1500; 1700) | 1 |
4) Гистограмма частот:
$IMAGE45$
5) Экономическая интерпретация. Средний объем промышленного производства за 16 месяцев составил 1178,1 тыс. руб. С надежностью 0,98 можно утверждать, что средний объем производства находится в пределах от 1061,8 до 1294,4 тыс. руб. Наибольшее число месяцев (7) объем производства находился в интервале от 1100 до 1300 тыс. руб.
Задание 2
По корреляционной таблице требуется: 1) в прямоугольной системе координат построить эмпирические ломаные регрессии Y на X и X на Y, сделать предположение о виде корреляционной связи; 2) оценить тесноту линейной корреляционной связи; 3) составить линейные уравнения регрессии Y на X и X на Y, построить их графики в одной системе координат; 4) используя полученное уравнение, оценить ожидаемое среднее значение признака Y при заданном x = 98. Дать экономическую интерпретацию полученных результатов.
В таблице дано распределение 200 заводов по основным фондам X в млн. руб. и по готовой продукции Y в млн. руб.:
y\x | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ny |
12 | 4 | | | | | | | | | 4 |
18 | 6 | 10 | 2 | | | | | | | 18 |
24 | | 8 | 13 | 1 | 1 | | | | | 23 |
30 | | 4 | 7 | 9 | 3 | 4 | 2 | | | 29 |
36 | | 1 | 2 | 3 | 12 | 4 | 8 | | | 30 |
42 | | | | 1 | 3 | 18 | 24 | 1 | | 47 |
48 | | | | | | | 7 | 12 | 3 | 22 |
54 | | | | | | | | 9 | 18 | 27 |
nx | 10 | 23 | 24 | 14 | 19 | 26 | 41 | 22 | 21 | n = 200 |