Четверг, 06 Фев 2025, 23:11
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 18
Гостей: 18
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Теорема Ферма. Бесконечный спуск для нечетных показателей n


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
08 Апр 2013, 18:36

Терема Ферма. Бесконечный спуск для нечётных показателей n.

Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных  значений показателя  n  тем же способом бесконечного спуска Ферма, что и для  n=4.

Ферма (потом Эйлер) доказывали эту теорему для частного случая n = 4 способом бесконечного спуска с помощью формул древних индусов:   x= a - b ,    y=2ab,    z= a + b .

Другие формулы:   x =  + by =  + a z =  + a + b        (1).

В (1) a и b любые взаимно простые положительные целые числа, одно из них – чётное, другое – нечётное. Пусть a – чётное, b нечётное:   a=2c $IMAGE8$, b=d $IMAGE8$, откуда =2cd.

После подстановки значений a и b в (1) получим:

X = d(2c+d);   Y= 2c(c+d);   Z= 2c(c+d)+ d $IMAGE8$                                 (2),

где  c и d  любые целые положительные числа;  c,d  и их суммы  взаимно просты;

X,Y,Z – взаимно простые тройки решений уравнения Пифагора. Если определены и целы c и d, то определены и целы все три числа X,Y,Z.

Предположим, что уравнение  Ферма  x $IMAGE12$+ y $IMAGE12$= z $IMAGE12$ имеет тройку целых положительных решений x,y,z при нечётном целом положительном значении показателя n, n>2. Запишем это уравнение следующим образом:

                                           (x $IMAGE15$) + (y $IMAGE15$) = (z $IMAGE15$)                         (4).

Так как рассматривается  возможность существования целых решений  уравнений  Ферма  и (4) , то должно выполняться  следующее условие:

           x $IMAGE15$= X;   y $IMAGE15$= Y;   z $IMAGE15$= Z;      где   X,Y,Z  из (2)              (5).

Чтобы числа x,y,z были целыми, из всех трёх чисел X,Y,Z должны извлекаться целочисленные корни степени n  (n – нечётное положительное целое число):

x = $IMAGE24$= ( $IMAGE25$) ;   y = $IMAGE27$= ( $IMAGE28$) ;   z = $IMAGE30$.

Для упрощения достаточно рассмотреть два целых числа $IMAGE25$ и $IMAGE28$ ( n – нечётное ):

$IMAGE25$ = $IMAGE34$= $IMAGE35$  и   $IMAGE28$= $IMAGE37$= $IMAGE38$.

Подкоренные выражения содержат сомножители не имеющие общих делителей, кроме 1, поэтому каждый сомножитель должен являться целым числом в степени n:

d = g $IMAGE39$; 2 c = h $IMAGE39$, следовательно,   $IMAGE25$ = $IMAGE42$ $IMAGE28$= $IMAGE44$.

Так как x, $IMAGE25$ – целые,  x – по условию, а $IMAGE25$ – из-за нечётн. n, то g $IMAGE39$+ h $IMAGE39$= k $IMAGE39$, где  k – целое.

Тройка решений  g,h,k  удовлетворяет уравнению Ферма, но все три числа меньше числа  x первой тройки решений, потому что наибольшее число k из g,h,k  меньше $IMAGE25$, так как $IMAGE25$=g $IMAGE52$а  $IMAGE25$<xтак как  x=( $IMAGE25$) . Число k заведомо меньше числа  z.

Повторим те же рассуждения для второй тройки решений  g,h,k, начиная с (4): 

 (g $IMAGE15$) + (h $IMAGE15$) = (k $IMAGE15$) ; g = $IMAGE24$=( $IMAGE63$) h = $IMAGE27$=( $IMAGE66$) k = $IMAGE30$.

$IMAGE63$ = $IMAGE34$= $IMAGE35$  и   $IMAGE66$= $IMAGE37$= $IMAGE38$.

d = p $IMAGE39$; 2 c = q $IMAGE39$, следовательно,   $IMAGE63$ = $IMAGE78$;   $IMAGE66$= $IMAGE80$.

p $IMAGE39$+ q $IMAGE39$= r $IMAGE39$, где  r – целое число. Все три числа  p,q,r  меньше числа  $IMAGE63$ из второй тройки решений и r<k. Таким же образом получается 4-я тройка решений, 5-я  и т.д. до $IMAGE85$.

При данных конечных целых положительных числах x,y,z не может существовать бес-конечной последовательности уменьшающихся целых положительных троек решений. Ряд натуральных чисел конечен. Отсюда целых положительных троек решений для целых положительных нечётных (и всех простых) значений показателя n (n>2) не существует.     

       Для чётных n=2m не кратных 4: (x ) $IMAGE87$+(y ) $IMAGE87$=(z ) $IMAGE87$, m – нечётное. Если нет целых троек решений для показателя m, то их нет и для 2m (это показал Эйлер). Для n=4 и n=4k (k=1,2,3…)  уже доказано, что целых положительных троек решений не существует.

А. Ф. Горбатов

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 145 | Загрузок: 7 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
06 Фев 2025
23:11


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz