Содержание
Введение. 2
1. Характеры.. 3
1.1 Определение характера. Основные свойства характеров. 3
1.2 Суммы характеров. Соотношение ортогональности. 6
1.3 Характеры Дирихле. 8
2. L-функция Дирихле. 13
3. Доказательство теоремы Дирихле. 29
Введение Простые числа расположены в натуральном ряде весьма неравномерно.
Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.
Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.
Пусть
mn + l, n=1,2, …,
прогрессия, удовлетворяющая условию теоремы.
Условие (m, l)=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d=(m, l)>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.
Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m, использовавшее, как выяснилось позднее, одну ошибочную лемму.
Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.
В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L (1,χ)¹0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.
1. Характеры
Характером (от греческого хараæτήp-признак, особенность) χ конечной абелевой группы G называется не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АÎG и BÎG
χ (АВ)= χ (А) χ(В).
Обозначим через Е единичные элементы в группе G и через А-1 обратный элемент для АÎG
Характеры группы G обладают следующими свойствами:
1. Если Е-единица группы, то для каждого характера χ
χ (Е)=1 (1.1)
Доказательство. Пусть для каждого элемента АÎG справедливо неравенство
c1(А)=c(АЕ)= c(А) χ (Е)
Из этого равенства получим, что c (Е)¹0. Теперь из равенства
c (Е)= c (ЕЕ)= c (Е) c (Е)=1
следует равенство (1.1)
2. c (А) ¹0 для каждого АÎG
Действительно, если бы χ (А) =0 для некоторого АÎG, то
c (А) χ (А-1)= c (АА-1)= χ (Е)=0,
а это противоречит свойству 1.
3. Если группа G имеет порядок h, то Аh=Е для каждого элемента АÎG Следовательно,
1= χ (Е)= χ (Аh)= χ (А)h,
то есть χ (А) есть некоторый корень степени h из единицы.
Характер χ1, обладающий свойством χ1(А)=1 для каждого элемента АÎG, называется главным характером группы G. Остальные характеры называются неглавными.
Лемма 1. Пусть Н подгруппа конечной абелевой группы G, причем G/H – циклическая порядка n, тогда для каждого характера χH – подгруппы Н существует ровно n характеров.
Доказательство. Рассмотрим группу G=
gkH, причем gnH=H, gnÎH и gn=h1=1.
Для каждого элемента XÎG существует и притом единственное к=кх и hх=h такое, что если 0£ кх <n, то X= gkх hх=gkh. Возьмем еще один элемент группы G, Y= gm hy, где 0£ m<n. Перемножим эти два элемента
ХY= gк+m hhy.
Определим характер χ (X).
χ (X)= χ (gк h)= χ (gк) χ (n)= χ к (g) χ H (h).
В данном выражении неизвестным является χ (g).
χ n (g)= χ (gn)= χ (h1)= χ H(h1) – данное число.
χ (g)= – n корней из 1,
то есть ξјn=χn(g)= χ H(h1), получаем xk (g)= ξјn. Следовательно, x(g)= ξ1, …, ξn
Из полученных равенств получаем:
χ (X)= χ k (g) χ H(hx)= ξjkx χ H (hx)
χ (Y)= χ m (g) χ H(hy)= ξjky χ H (hy)
Определим умножение характеров
χ (X) χ (Y)= ξjky χ H (hy) ξjk-x χ H (hx)= ξjkx+ky χ H (hx) χ H (hy)= jk+m χ H (hhy)
Для того чтобы определение выполнялось, необходимо рассмотреть степень gkx+kx. Возможны два случая:
1) Если 0£ кх + ky<n, то
кх + ky= kxy,; hxhy = hxy.
В этом случае определение выполняется.
2) Если n£ кх + ky<2n-1, то получим
кх + ky = n + kxy..
Тогда
XY= g kx+ky hxhy=ghgkx+ky-n hx hy=gkx+ky-n h1hxhy
В свою очередь 0£ кх + ky – n£n-1 Þ kx+ky – n=kxy, h1hxhy = hxy.
χ (XY) = ξj kх+kу χн (hxу) = ξj kх + kу – n χн (h1) χн(hx) χн (hy) = ξjкх ξj ку ξj– n χн (h1) χн(hx) χн (hy) = ξj кх χн (h1х) · ξj ку χн(hy) = χ (X) χ(Y).
Лемма доказана.
5. Характеры конечной мультипликативной абелевой группы G образуют конечную мультипликативную абелевую группу Ĝ.
Под произведением двух характеров χ' и х χ'' группы G будем понимать характер х, определяемый следующим свойством:
χ (AB) = χ' (A) χ'' (В)
Для любого элемента АÎG, имеем:
χ (АВ) = χ' (АВ) χ'' (АВ) = χ' (А) χ' (В) · χ'' (А) χ'' (В) = χ(А) χ(В)
Таким образом, получаем χ ' χ '' действительно является характером.
Роль единичного элемента группы G играет главный характер χ1
Обратным элементом G является:
χ2 (g1 g2) = $IMAGE6$ = $IMAGE7$ $IMAGE8$= $IMAGE9$ = χ2(g1) χ2(g1)
Пусть G – конечная мультипликативная абелева группа порядка h. Рассмотрим сумму:
S = $IMAGE10$,
где А пробегает все элементы G, и сумму
Т = $IMAGE11$
где c пробегает все элементы группы характеров Ĝ.
Рассмотрим чему равна каждая из сумм.
а) Если В-фиксированный элемент группы G и А пробегает все элементы G, то АВ также пробегает все элементы группы G. Следовательно,
S·c (В) = $IMAGE11$c (В) = $IMAGE13$ = $IMAGE10$ = S.
Получили Sc (В) = S, откуда следует, что (c (В) – 1)·S = 0. Следовательно, возможны два варианта:
1) S = 0, то c (В) – негативный характер
2) S≠0, то c (В) = 1 для каждого элемента В€G и в этом случае c (В)= c1(В) есть главный характер и сумма S равна порядку h группы G. Таким образом,
S = $IMAGE10$ = { $IMAGE16$ (1.2)
б) Если мы умножим сумму Т на некоторый характер c’ группы Ĝ, то аналогичным образом получим
c’ (А) Т = $IMAGE11$ c’ (А) = $IMAGE10$ = Т,
Следовательно,
1) или Т = 0, то А ≠Е
2) или Т ≠ 0, то c’ (А) = 1 для каждого характера c’€ G. В этом случае согласно свойству 3§ 1, имеем А=Е. И тогда Т=h. Таким образом,
Т = $IMAGE10$= { $IMAGE20$
1.3 Характеры Дирихле
Пусть m – положительное целое число. Определим числовые характеры по модулю m. Мы знаем, что j(m) приведенных классов вычетов по модулю m образуют мультипликативную абелеву группу порядка h=j(m). Мы можем, следовательно, рассмотреть характер этой группы. Но определение характера для приведенных классов вычета по модулю m можно перенести на множество целых чисел следующим образом. Положим
c(а)= c(А), если аÎА,
где А – приведенный класс вычетов по модулю m. Тогда очевидно, c(а)= c(b) (mod m), и c(ab)= c(а) c(b), если (а, m)=(b, m)=1. Поскольку c(А)¹0 для каждого приведенного класса вычетов А, то c(а)¹0, если (a, m)=1.
Это определение применимо только к целым числам а, которые взаимно просты с m.
Мы можем рассмотреть его на все целые числа, положив
c(а)=0, если (a, m)>1.
Следовательно, характер по модулю m есть арифметическая функция c, обладающая следующими свойствами:
c(а)= c(b), если с=b (mod m)
c(ab)= c(a) c(b) для всех целых a и b
c(а)=0, если (a, m)>1
c(а)¹0, если (a, m)=1
Имеется точно j(m) – количество характеров по модулю m, где j(m) – количество положительных целых чисел, не превосходящих m и взаимно простых с m. Они образуют мультипликативную абелеву группу приведенных классов вычета по mod m. Единичным элементом этой группы будет главный характер c1, то есть такой характер, что c1(а)=1, если (а, m)=1. Далее имеем следующее соотношение ортогональности:
$IMAGE21$= { $IMAGE22$
$IMAGE23$= { $IMAGE24$
Пусть m – положительное целое число. Определим числовые характеры по модулю m. Комплекснозначная функция, определенная для всех целых чисел n, называется числовым характером или характером Дирихле по модулю m, она удовлетворяет следующим условиям:
а) c (n) = 0 тогда и только тогда, когда (n, m) ≠ 1
б) c (n) периодична с периодом m
в) для любых чисел а и b
c (аb) = c (а) c (b)
Функция
c1(n) = { $IMAGE25$
является числовым характером и называется главным характером. Остальные числовые характеры по модулю m называются неглавными.
Имеет место следующее утверждение о числовых характерах.
Теорема 1 Существует равно φ(m) числовых характеров по модулю m. Если c = c (n) – числовой характер по модулю m, то:
1) для n, взаимно простых с модулем m, значения c (n) есть корень из 1 степени φ(m).
2) для всех n выполняется неравенство /c (n)/ ≤1
3) Имеет место равенство
$IMAGE26${ $IMAGE27$
4) Для каждого целого числа n
$IMAGE28$ = { $IMAGE29$
Доказательство. Пусть c (n) – некоторый числовой характер по модулю m. Из