Суббота, 01 Фев 2025, 04:03
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 11
Гостей: 11
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Существование решения дифференциального уравнения и последовательные приближения


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
07 Апр 2013, 09:02

Министерство образования Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

«Самарский государственный университет»

механико-математический факультет

кафедра дифференциальных уравнений и теории управления

специальность прикладная математика

Существование решения дифференциального уравнения и последовательные приближения

Курсовая работа

Выполнил студент

2 курса 1222 группы

Труфанов Александр Николаевич

Научный руководитель

Долгова Ольга Андреевна

__________

работа защищена

«___»___________200_г.

Оценка _______________

зав. Кафедрой профессор д.ф.-м.н.

Соболев В.А.

Самара 2004

Теорема существования и единственности решения уравнения

Пусть дано уравнение

с начальным условием

Пусть в замкнутой области R функции и непрерывны). Тогда на некотором отрезке $IMAGE6$существует единственное решение, удовлетворяющее начальному условию $IMAGE7$.

Последовательные приближения определяются формулами:

$IMAGE8$  $IMAGE9$ k = 1,2....

Задание №9

Перейти от уравнения

 

$IMAGE10$

 к системе нормального вида и при начальных условиях

$IMAGE11$, $IMAGE12$, $IMAGE13$

построить два последовательных приближения к решению.

Произведем замену переменных

$IMAGE14$; $IMAGE15$

 и перейдем к системе нормального вида:

$IMAGE16$

Построим последовательные приближения

$IMAGE17$       

$IMAGE18$

Задание №10

Построить три последовательных приближения $IMAGE19$ к решению задачи

$IMAGE20$, $IMAGE21$

Построим последовательные приближения

$IMAGE22$

$IMAGE23$

Задание №11

а) Задачу

$IMAGE24$, $IMAGE25$

свести к интегральному уравнению и построить последовательные приближения $IMAGE26$

б) Указать какой-либо отрезок, на котором сходятся последовательные приближения, и доказать их равномерную сходимость.

Сведем данное уравнение к интегральному :

$IMAGE27$

$IMAGE28$

$IMAGE29$

Докажем равномерную сходимость последовательных приближений

С помощью метода последовательных приближений мы можем построить последовательность

$IMAGE30$

непрерывных функций, определенных на некотором отрезке $IMAGE31$, который содержит внутри себя точку $IMAGE32$. Каждая функция последовательности определяется через предыдущую при помощи равенства

$IMAGE33$  $IMAGE34$i = 0, 1, 2 …

Если график функции $IMAGE35$ проходит в области Г, то функция $IMAGE36$ определена этим равенством, но для того, чтобы могла быть определена следующая функция $IMAGE37$, нужно, чтобы и график функции $IMAGE36$ проходил в области Г. Этого удается достичь, выбрав отрезок $IMAGE39$достаточно коротким. Далее, за счет уменьшения длины отрезка $IMAGE39$, можно достичь того, чтобы для последовательности $IMAGE30$ выполнялись неравенства:

$IMAGE42$, i = 1, 2, …,

где 0 < k < 1. Из этих неравенств вытекает следующее:

$IMAGE43$, i = 1, 2, …,

Рассмотрим нашу функцию на достаточно малом отрезке, содержащим $IMAGE44$, например, на $IMAGE45$. На этом промежутке все последовательные приближения являются непрерывными функциями. Очевидно, что т.к. каждое приближение представляет из себя функцию от бесконечно малого более высокого порядка, чем предыдущее приближение, то выполняются и описанные выше неравенства. Из этих неравенств следует:

$IMAGE46$

что и является условием равномерной сходимости последовательных приближений.

С другой стороны, на нашем отрезке выполняется $IMAGE47$, что также совершенно очевидно. А так как последовательность $IMAGE48$ сходится, то последовательность приближений является равномерно сходящийся на этом отрезке.

Список использованной литературы

1. Л.С. Понтрягин. «Обыкновенные дифференциальные уравнения», М.: Государственное издательство физико-математической литературы, 1961

2. А.Ф. Филиппов «Сборник задач по дифференциальным уравнениям», М.: Интеграл-Пресс, 1998

3. О.П. Филатов «Лекции по обыкновенным дифференциальным уравнениям»,Самара: Издательство «Самарский университет», 1999

4. А.Н. Тихонов, А.Б. Васильева «Дифференциальные уравнения», М.: Наука. Физматлит, 1998

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 133 | Загрузок: 2 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Суббота
01 Фев 2025
04:03


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz