Четверг, 30 Янв 2025, 08:48
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 14
Гостей: 14
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Сравнительный анализ методов оптимизации


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
13 Апр 2013, 23:39

Министерство образования и науки Республики Казахстан

Карагандинский Государственный Технический Университет

Кафедра САПР

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по дисциплине "Теория принятия решений"

Тема: "Сравнительный анализ методов оптимизации"

Руководитель:

(подпись) (дата)

Студент:

(группа)

_____________________

(подпись) (дата)

Караганда 2009


Содержание

Введение

1. Формулировка математической задачи оптимизации. Основные понятия

1.1 Формулировка математической задачи оптимизации

1.2 Минимум функции одной переменной

1.3 Минимум функции многих переменных

1.4 Унимодальные функции

1.5 Выпуклые функции

2. Прямые методы безусловной оптимизации

2.1 Прямые методы одномерной безусловной оптимизации

2.1.1 Метод деления отрезка пополам (дихотомии)

2.1.2 Метод золотого сечения

2.1.3 Практическое применение прямых методов одномерной безусловной оптимизации

2.2 Методы безусловной минимизации функций многих переменных

2.2.1 Метод циклического покоординатного спуска

2.2.2 Алгоритм Хука-Дживса

2.2.3 Практическое применение прямых методов безусловной многомерной оптимизации

2.2.4 Минимизация по правильному симплексу

2.2.5 Поиск точки минимума по деформируемому симплексу

2.2.6 Практическая реализация симплексных методов

3. Условная оптимизация

4. Линейное программирование

Заключение

Список использованной литературы


Введение

Задача оптимизации всегда была весьма актуальной, а в последнее время, с ускоренным развитием различных областей науки и техники, она приобрела еще более весомое значение.

Так как поведение любого физического объекта можно описать уравнением или системой уравнений (т.е. создать математическую модель реального объекта), то задачей инженера является подбор функции с заданной точностью при данных граничных условиях, которая бы могла "показать" оптимальное решение.

В данном курсовом проекте рассмотрены базовые методы оптимизации, которые дают основное представление о теории принятия решений и широко применяются в самых различных сферах.


1. Формулировка математической задачи оптимизации. Основные понятия

1.1 Формулировка математической задачи оптимизации

В достаточно общем виде математическую задачу оптимизации можно сформулировать следующим образом; минимизировать (максимизировать) целевую функцию с учетом ограничений на управляемые переменные.

Под минимизацией (максимизацией) функции n переменных f (x) = (x1,.., xn) на заданном множестве U n-мерного векторного пространства Еn понимается определение хотя бы одной из точек минимума (максимума) этой функции на множестве U, а также, если это необходимо, и минимального (максимального) на множестве U значения f (x). При записи математических задач оптимизации в общем виде обычно используется следующая символика:

f (x) ®min (max),

хÎ U

где f (x) - целевая функция, а U - допустимое множество, заданное ограничениями на управляемые переменные.

Если функция f (x) - скалярная, то задача ее оптимизации носит название задачи математического программирования. В этом случае критерий оптимизации один, и, следовательно, речь идет об однокритериальной (одномерной) оптимизации. Если же критериев несколько, то такая задача называется многокритериальной (задачей векторного программирования).

Если область допустимых значений исходной функции задана, то оптимизация называется условной, т.е. имеются ограничения.

Если же ограничений нет, т.е. областью определения является область существования функции f (x), то такая оптимизация называется безусловной.

1.2 Минимум функции одной переменной

Пусть функция f (x) определена на множестве U вещественной оси R.

1. Число х* Î U называется точкой глобального (абсолютного) минимума или просто точкой минимума функции f (x) на множестве U, если f (x*) £ f (x) для всех хÎ U.

Значение f * = f (x*) =  называют глобальным (абсолютным) минимумом или просто минимумом функции f (x) на множестве U.

Множество всех точек минимума f (x) на U в дальнейшем будет обозначено через U*.

2. Число  ÎU называется точкой локального минимума функции f (x), если для всех xÎU, достаточно близких к , т.е. если существует e > 0 такое, что это неравенство выполняется для любого $IMAGE6$.

Глобальный минимум f (x) является и локальным минимумом, а обратное неверно.

1.3 Минимум функции многих переменных

Будем рассматривать функции многих переменных f =f (x1, …, xn) как функции, заданные в точках х n-мерного евклидова пространства Еn: f =f (х).

1. Точка х*ÎЕn, называется точкой глобального минимума функции f (х), если для всех х*ÎЕn выполняется неравенство f (x*) £ f (х). Значение f (x*) = = $IMAGE7$ называется минимумом функции. Множество всех точек глобального минимума функции f (х) будем обозначать через U*.

2. Точка $IMAGE8$ называется точкой локального минимума функции f (х), если существует e-окрестность точки $IMAGE8$: Un ( $IMAGE8$) ={x | r (x, $IMAGE8$) < e} такая, что для всех х*ÎUn ( $IMAGE8$) выполняется неравенство f ( $IMAGE8$) £ f (х).

3. Если допустимое множество U в задаче минимизации (максимизации) функции n переменных совпадает со всем пространством En, то говорят о задаче безусловной оптимизации

$IMAGE14$, x Î En.

1.4 Унимодальные функции

Если функция f (x) на множестве U имеет, кроме глобального, локальные минимумы, отличные от него, то минимизация f (x), как правило, сильно затрудняется. В частности, многие методы поиска точки минимума f (x) приспособлены только для функций, у которых каждый локальный минимум является одновременно и глобальным. Этим свойством обладают унимодальные функции.

Функция f (x) называется унимодальной на отрезке [а; b], если она непрерывна на [а; b] и существуют числа a и b, $IMAGE15$, такие, что:

1) если а < a, то на отрезке [a; a] функция f (x) монотонно убывает;

2) если b < b, то на отрезке [b; b] функция f (x) монотонно возрастает;

3) при х Î [a; b] f (x) =f * = $IMAGE16$.

Множество унимодальных на отрезке [а; b] функций мы будем обозначать через Q [а; b]. Отметим, что возможно вырождение в точку одного или двух отрезков из [a; a], [a; b] и [b; b]. Некоторые варианты расположения и вырождения в точку отрезков монотонности и постоянства унимодальной функции показаны на рисунке 1.

$IMAGE17$

Рисунок 1 - Некоторые варианты расположения и вырождения в точку отрезков монотонности и постоянства унимодальной функции

Основные свойства унимодальных функций:

1. Любая из точек локального минимума унимодальной функции является и точкой ее глобального минимума на отрезке [а; b].

2. Функция, унимодальная на отрезке [а; b], является унимодальной и на любом меньшем отрезке [с; d] $IMAGE18$ [а; b].

3. Пусть f (x) $IMAGE19$Q [а; b] и $IMAGE20$. Тогда:

если $IMAGE21$, то x* $IMAGE19$ [a; x2] ;

если $IMAGE23$, то x* $IMAGE19$ [x1; b],

где х* - одна из точек минимума f (x) на отрезке [a; b].

1.5 Выпуклые функции

Функция f (x), заданная на отрезке [a; b], называется выпуклой на этом отрезке, если для всех х', х" $IMAGE19$ [а; b] и произвольного числа $IMAGE26$ [0; 1] выполняется неравенство

f [ax'+ (1- a) x"] £ af (x') + (l - a) f (x"). (1)

Перечислим основные свойства выпуклых функций.

Если функция f (x) выпукла на [a; b], то на любом отрезке [х'; х"] Ì [a; b] ее график расположен не выше хорды, проведенной через точки графика с абсциссами х' и х" (рисунок 2).

$IMAGE27$

Рисунок 2 - Взаимное расположение $IMAGE28$

Пусть х' и х" - произвольные точки отрезка [a; b], причем х' < х". Легко проверить, что при любом a Î [0; 1] точка xa = ax + (1-a) x" лежит на отрезке [x’; х"] и при непрерывном изменении a от 0 до 1 пробегает этот отрезок от точки х" (при a = 0) до точки x' (при a = 1).

Рассмотрим хорду графика f (x), проходящую через точки (х',f (х')) и (х",f (х")). Ордината ya точки этой хорды, соответствующая абсциссе c, равна. Поэтому неравенство (1) графика выпуклой функции и хорды означает, что f (xa) £ ya, т.е. при любом расположении xa, на отрезке [х'; х"] точка графика функции f (x) лежит не выше соответствующей точки хорды.

2. Из курса математического анализа известны следующие условия выпуклости функции:

а) для того чтобы дифференцируемая на отрезке [а; b] функция f (x) была выпуклой на этом отрезке, необходимо и достаточно, чтобы производная f ' (x) не убывала на [а; b] ;

б) для того чтобы дважды дифференцируемая на отрезке [а; b] функция f (x) была выпуклой на этом отрезке, необходимо и достаточно, чтобы при всех хÎ [а; b] выполнялось неравенство f " (x) ³ 0.

3 Условие выпуклости для дифференцируемой на отрезке [а; b] функции f (x) означает, что на этом отрезке любая касательная к графику f (x) лежит не выше этого графика (рисунок 3).

$IMAGE29$

Рисунок 3 - условие выпуклости

Уравнение касательной к графику f (х) в точке (x0, f (x0)), x0 Î [а; b] имеет вид: у (х) =f (x0) +f ’ (x0) (x-x0). По формуле конечных приращений для любого хÎ [а; b] имеем: f (х) =f (x0) +f ’ (x) (x-x0), где точка x лежит между x и x0. Поэтому

f (х) - у (х) = [f ’ (x) - f ’ (x0)] (x-x0), хÎ [а; b],

откуда с учетом того, что производная f ’ (x) выпуклой функции не убывает, получаем:

f (x) -y (x) ³ 0 (2)

для всех хÎ [а; b].

4. Если f (x) - выпуклая дифференцируемая на отрезке [а; b] функция и в точке х* Î [а; b] выполняется равенство

f ’ (x*) = 0 (3)

то х* является точкой глобального минимума f (х) на [а; b].

С учетом (3) уравнение касательной у (х) =f (х0) +f ’ (х0) (х-х0) к графику f (x) для точки x0 =х* принимает вид у (х) =f (x*). Поэтому из (2) следует, что f (x) $IMAGE30$f (x*) для всех хÎ [а; b], т.е. х* - точка глобального минимума f (x).

Благодаря свойству 3 выпуклых функций данное свойство приобретает простой геометрический смысл: поскольку касательная к графику f (x) в точке с абсциссой х* горизонтальна, а этот график расположен не ниже касательной, то х* есть точка минимума f (x) (рисунок 3).

Таким образом, равенство (3) для выпуклой дифференцируемой функции является не только необходимым условием глобального минимума (как для всякой дифференцируемой функции), но и его достаточным условием.

5. Можно показать, что всякая выпуклая непрерывная на отрезке [а; b] функция является и унимодальной на этом отрезке. Обратное, вообще говоря, неверно (рисунок 4).

$IMAGE31$

Рисунок 4 - график унимодальной, но не выпуклой функции

Таким образом, кроме перечисленных свойств, выпуклые функции обладают также и всеми свойствами унимодальных функций.


2. Прямые методы безусловной оптимизации

Для решения задачи минимизации функции f (х) на отрезке [а; b] на практике, как правило, применяют приближенные методы. Они позволяют найти решение этой задачи с необходимой точностью в результате определения конечного числа значений функции f (х) и ее производных в некоторых точках отрезка [а; b]. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации.

Большим достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости и, более того, она может быть не задана в аналитическом виде. Единственное, на чем основаны алгоритмы прямых методов минимизации, это возможность определения значений f (х) в заданных точках.

Рассмотрим наиболее распространенные на практике прямые методы поиска точки минимума. Самым слабым тр

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 160 | Загрузок: 3 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
30 Янв 2025
08:48


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz