Формулы сокр. умножения и разложения на множители :
(a±b)І=aІ±2ab+bІ
(a±b)і=aі±3aІb+3abІ±bі
aІ-bІ=(a+b)(a-b)
aі±bі=(a±b)(aІ∓ab+bІ),
(a+b)і=aі+bі+3ab(a+b)
(a-b)і=aі-bі-3ab(a-b)
xn-an=(x-a)(xn-1+axn-2+aІxn-3+...+an-1)
axІ+bx+c=a(x-x1)(x-x2)
где x1 и x2 — корни уравнения
axІ+bx+c=0
Степени и корни :
ap·ag = ap+g
ap:ag=a p-g
(ap)g=a pg
ap /bp = (a/b)p
apbp = abp
a0=1; a1=a
a-p = 1/a
pa =b => bp=a
papb = pab
a ; a ≥ 0
____
/ __ _
p ga = pga
___ __
pkagk = pag
p ____
/ a pa
/ =
b pb
a 1/p = pa
pag = ag/p
Квадратное уравнение
axІ+bx+c=0; (a0)
x1,2= (-bD)/2a; D=bІ -4ac
D>0 x1x2 ;D=0 x1=x2
D<0, корней нет.
Теорема Виета:
x1+x2 = -b/a
x1 x2 = c/a
Приведенное кв. Уравнение:
xІ + px+q =0
x1+x2 = -p
x1x2 = q
Если p=2k (p-четн.)
и xІ+2kx+q=0, то x1,2 = -k(kІ-q)
Нахождение длинны отр-ка
по его координатам
((x2-x1)І-(y2-y1)І)
Логарифмы:
loga x = b => ab = x; a>0,a0
a loga x = x, logaa =1; loga 1 = 0
loga x = b; x = ab
loga b = 1/(log b a)
logaxy = logax + loga y
loga x/y = loga x - loga y
loga xk =k loga x (x >0)
logak x =1/k loga x
loga x = (logc x)/( logca); c>0,c1
logbx = (logax)/(logab)
Прогрессии
Арифметическая
an = a1 +d(n-1)
Sn = ((2a1+d(n-1))/2)n
Геометрическая
bn = bn-1 q
b2n = bn-1 bn+1
bn = b1qn-1
Sn = b1 (1- qn)/(1-q)
S= b1/(1-q)
Тригонометрия.
sin x = a/c
cos x = b/c
tg x = a/b=sinx/cos x
ctg x = b/a = cos x/sin x
sin (-) = sin
sin (/2 -) = cos
cos (/2 -) = sin
cos ( + 2k) = cos
sin ( + 2k) = sin
tg ( + k) = tg
ctg ( + k) = ctg
sinІ + cosІ =1
ctg = cos / sin , n, nZ
tg ctg = 1, (n)/2, nZ
1+tgІ = 1/cosІ , (2n+1)/2
1+ ctgІ =1/sinІ , n
Формулы сложения:
sin(x+y) = sin x cos y + cos x sin y
sin (x-y) = sin x cos y - cos x sin y
cos (x+y) = cos x cos y - sin x sin y
cos (x-y) = cos x cos y + sin x sin y
tg(x+y) = (tg x + tg y)/ (1-tg x tg y )
x, y, x + y /2 + n
tg(x-y) = (tg x - tg y)/ (1+tg x tg y)
x, y, x - y /2 + n
Формулы двойного аргумента.
sin 2 = 2sin cos
cos 2 = cosІ - sinІ = 2 cosІ - 1 =
= 1-2 sinІ
tg 2 = (2 tg)/ (1-tgІ)
1+ cos = 2 cosІ /2
1-cos = 2 sinІ /2
tg = (2 tg (/2))/(1-tgІ(/2))
Ф-лы половинного аргумента.
sinІ /2 = (1 - cos )/2
cosІ/2 = (1 + cos)/2
tg /2 = sin/(1 + cos ) = (1-cos )/sin
+ 2n, n Z
Ф-лы преобразования суммы в произв.
sin x + sin y = 2 sin ((x+y)/2) cos ((x-y)/2)
sin x - sin y = 2 cos ((x+y)/2) sin ((x-y)/2)
cos x + cos y = 2cos (x+y)/2 cos (x-y)/2
cos x - cos y = -2sin (x+y)/2 sin (x-y)/2
sin (x+y)
tg x + tg y = —————
cos x cos y
sin (x - y)
tg x - tgy = —————
cos x cos y
Формулы преобр. произв. в сумму
sin x sin y = Ѕ(cos (x-y) - cos (x+y))
cos x cos y = Ѕ(cos (x-y)+ cos (x+y))
sin x cos y = Ѕ(sin (x-y)+ sin (x+y))
Соотнош. между ф-ями
sin x = (2 tg x/2)/(1+tg2x/2)
cos x = (1-tg2 2/x)/ (1+ tgІ x/2)
sin2x = (2tgx)/(1+tg2x)
sinІ = 1/(1+ctgІ) = tgІ/(1+tgІ)
cosІ = 1/(1+tgІ) = ctgІ / (1+ctgІ)
ctg2 = (ctgІ-1)/ 2ctg
sin3 = 3sin -4sinі = 3cosІsin-sinі
cos3 = 4cosі-3 cos=
= cosі-3cossinІ
tg3 = (3tg-tgі)/(1-3tgІ)
ctg3 = (ctgі-3ctg)/(3ctgІ-1)
sin /2 = ((1-cos)/2)
cos /2 = ((1+cos)/2)
tg/2 = ((1-cos)/(1+cos))=
sin/(1+cos)=(1-cos)/sin
ctg/2 = ((1+cos)/(1-cos))=
sin/(1-cos)= (1+cos)/sin
sin(arcsin ) =
>
1) a>
f(x) >
1. a>1, то : f(x) >
(x)>
f(x)>
2. 0
(x)>
(x) >
f(x) >
а такое невозможно, =>