Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож, умнож, вычит, деление(кроме деления на 0).
Впопрос 1. Система натуральных чисел. Принцип мат. Индукции. Аксиомы Пиано: 1.В N cущ. ! элем. a’ непосредст. следующий за а. 2.Для люб-го числа а из N сущ-т ! эл-т а’ непосредственно следующий за а. 3. Для люб. элем-та из N сущ. не более 1 эл-та за которым непосредственно следует данный эл-т. 4. Пусть М ċ N и выполн-ся: 1. 1€ М 2. если а€М след-но а’€M тогда М=N опр: Любое множество N для эл-тов которого установлено отношение ‘непосредственно следовать за’ удавлет-щее аксиомама Пиано наз-ся множеством натуральных чисел. Алгебр-ие операц-и на N: 1. Сложение – это алг. опер-я определенная на N и обладающая свойствами: 1.(для люб. а) а+1=а’ 2. (для люб. а,b) a+b’= (a+b)’ (a+b-сумма, а,b -слогаемые) Т.Сложение нат. чисел сущ и !. 2. Умножение: 1. для люб а а*1=а 2. для люб а,b a*b’=ab+a T/ Умножение нат чисел сущ. и !. Свойства сложения: 1. для люб. а,bˆN a+b=b+a (комут-ть) 2. Длб люб. a,b,cˆN (a+b)+c=a+(b+c) (ассац-ть) Свойства умнож-я: 1.(Для люб. а,bˆN) ab=ba 2. (для люб. a,b,c ˆN) (ab)c=a(bc) 3.(a,b,cˆN) a(b+c)=ab+ac Операции вычитания и деления лишь частично выполняются на N. Отношение порядка на N: На N введем отношение ‘<’ cледующим образом: a Принцип мат. индукции и его формулировки: 1. Если некоторое утвержд. А(n) с натураль. переменной n справедливо при n=1 и из справедливости при n=k следует справедливость при n=k+1 , то даное утверждение справедливо при любом nˆN. 2. Если некоторое утвер-е А(n) справедлино при n=1 и из справедливости его для всех n 3. Если А(n) справедливо при n=a и из справ-ти при n=k следует его справ-ть при n=k+1, то данное утверж-е будет справедл-во при na. Cвойства N: 1. N-упорядоченное. 2. N линейно упорядоченное (т.е.вероно только одно ab.) 3Сложение монотонно на N 4. Умножение монотонно. 5. N бесконечное и ограниченное снизу еденицей. 6. Любое непустое подмножество множ. N содержит наименьший эл-т. 7. N дискретно 8 Выполняется принцип Архимда (Va,bˆN) (сущ. nˆN) a*n>b
Вопрос 2. Простые числа. Беск-ть мн-ва простых чисел. Канонич. разложение составного числа и его !. Всякое число р€N, р>1 не имеющее др. натур-х делит-й, кроме 1 и р, наз-ся простым. Всякое число р€N≠1 и не явл-ся простым, наз-ся составным. Число 1 не явл-ся ни простым, ни сост-м. Мн-во N можно разбить на: простые, сост-е и 1. Св-ва: 1. Наим-й делитель всякого нат-го числа есть число простое. 2. Нат-е число n и простое число р либо взаимнопростые, либо р|n. 3. Если р-простое и р|a1*a2*…*an , то р|a1 или р|a2 …или р|an. 4. Если р|р1*р2*…*рn и р, р1, р2… рn – простые числа, то р=р1 или р=р2 или… р=рn. Наим-й простой делитель нат-го числа n не превос-т √n. Док-во: пусть р-наим-й простой дел-ль n. Покажем р≤√n. р|n => n=р*q (1), р≤q. Заменим в (1) q на р: n≥р2, т.к. р2≤n, р≤√n. ■ Всякое нат-е число n>1 либо явл-ся простым, либо м.б. предст-а в виде произв-я простых множ-й n=р1*р2*…*рr, r≥1 (1) и (1) явл-ся ! с точностью до порядка следования множ-й. (1) наз-ся разл-м числа n на простые множ-ли. Док-во: 1. док-во сущ-я предст-я (1): Если n –число простое, то ■. Пусть n-сост-е и р1 его натур-й дел-ль. Как было док-но р1 число простое и можно записать: n=р*n1, где р≤n1. Если n1 число простое, то ■; если n1 сост-е, то р2 – его наименьший простой делитель. n1=р2*n2, n=р1*р2*n2. Если n2 сост-е, то рассуждаем аналог. Это можно прод-ть пока не придем к какому-либо ns=1. То, что после конечного числа шагов такое ns должно получ-ся => из того, что n>n1>n2>…>ns мн-во нат-х чисел, т.е. все эти числа меньше n. Итак, через конеч-е число шагов число n можно пред-ть в виде (1). 2. Док-во !: Предпол-м, что сущ-т 2 разлож-я числа n на простые множ-ли n=p1*p2*…*pr и n=q1*q1*…*qs, где р1, …рr, q1,…qs простые числа. p1*p2*…*pr= q1*q2*…*qs. Нужно показ-ть r=s. Левая часть делит-ся на р1 => на р1 делит-ся и правая часть. Учит-я, что в правой части стоят также простые числа, то по свойству простых чисел р совпадает с одним из них. Пусть р1=q1, тогда после сокращ-я: p2*…*pr= q2*…*qs. Аналог. рассуж-я, убеждаемся, что р2 совп-т с одним из множ-й q. Пусть р2=q2, после сокр-я: p3*…*pr= q3*…*qs и т.д. Предпол-м, что r≠s. Пусть rr+1*…*qs, но это равен-во невозм-но, т.к. произв-е простых чисел ≠1. Итак, r=s и представ-е (1) ! с точностью до порядка следования множ-й.■ N=p1 α1* p2 α2*… *pk αk – каноническое разлож-е числа n на простые множ-ли. Показ-т, что все делители числа n исчерпыв-ся числами вида p1 β1* p2 β2*… *pk βk, где 0≤β1 ≤α1, …0≤βк ≤αк. Теорема Евклида: мн-во сех простых чисел бесконечно. Решето Эратосферна. Выписать все нат-е числа от 2 до m из них вычеркивают каждое второе после простого числа 2. Первым не зачеркнутым числом остается простое число 3. Теперь выч-т каждое 3-е число, причем считают и те числа, кот. выч-ты ранее и т.д. После выч-я всех чисел кратных простому числу рn первое не зач-е число будет простым – рn+1. рn+1- простое число, т.к. иначе оно имело бы простой делит-ль ≤рn, но все числа кратные простым ≤рn уже вычеркнуты. Поэтому выч-е кратные простому числу рn+1 следует начинать с (рn+1)2 и состав-е таблиц простых чисел ≤m => считать закон-м как только найдено число >√m.
Вопрос 3. Кольцо целых чисел. Теорема о делении с остатком. НОД и НОК двух чисел. На N вып-ы опер-и “+” и “*”, но опер-я “-” вып-ся частично, т.е. ур-е а+х=в в N не всегда разреш-о. Это одна из причин разширения N. При расщ-и одной с-ы чисел до др-й должны вып-ся несколько треб-й: 1) NЄZ. 2) +,* должны вып-ся в Z, причем рез-ы опер-й для чисел из N в N и Z должны совп-ть. 3) +,* - комут-ы, ассоц-ы и связ. дистр-м законом. 4) в Z должна вып-ся опер-я “-”. т.е. ур-е а+х=в одноз-о разрешимо в Z для люб-х а,вЄZ. 5) Z должно быть миним. расш-м из всех расш-й мн-ва N облад-е св-ми 1-4. Число в делит а, если сущ-т qЄZ, что а=b*q. Отношение “b делит а” наз-ют отношением делимости и зап-т b|а. Св-ва: 1) (Ґа)(а|a). 2) (Ґa,b,c)(a|b^b|c=>a|c). 3) (Ґа)(а|0). 4) (Ґа)(0ła). 5) (Ґа)(1|a^-1|a). 6) a|b^b|a=> b=±a. 7) (Ґx)(а|b=>a|b*x). 8) (Ґx1,x2,…xr)(b|a1^b|a2…^b|ar=>b|(x1a1+x2a2+…+xrar)).9)(Ґа,b)(b|a=>|b|0^b>0=>bb|(-a)=>(-b)|a. Теорема о делении с остатком. Разделить целое число a на bЄZ, это значит найти 2 таких q и rЄZ, что a=b*q+r (1) 0≤r<|b|, q- неполное частное, r-остаток. (Ґa,bЄZ^b#0 сущ-т !q, r, что a=b*q+r, 0≤r<|b|). Док-во: 1) Возм-ть дел-я с ост-м. 2 случая: 1. aЄZ, b>0, т.е. bЄN. Рассм. всевоз-е кратные числа b.Пусть b*q наиб. кратные числа b не превыш-е a, т.е. b*q≤a0, т.е. –bЄN и имеем случай 1. т.е. сущ-т q,rЄZ, что a=(-b)*q+r, 0≤r<|-b| => a=b*(-q)+r, 0≤r<|b|. 2) !-ть дел-я. Пусть деление a на b не !, т.е. сущ-ют 2 неполных частных q1, q2 и два остатка r1, r2, тогда a=b*q1+r1, 0≤r1<|b|, a=b*q2+r2, 0≤r2<|b|. b*q1+r1=b*q2+r2; b*(q1-q2)=r2-r1 => b|(r2-r1). Но т.к. 0≤r1<|b| и 0≤r2<|b| => |r2-r1|<|b|. b|(r2-r1)^ |b|>|r2-r1| => r2-r1=0. т.е. r1=r2, но и тогда q1=q2.■ Следствие. ҐaЄZ^bЄN сущ-т !q, r, что a=b*q+r, 0≤r Общим делителем чисел a1,a2,…ar наз-ся такое число c, что с|a1^ с|a2^…с|ar. c=ОД(а1,а2,…аr). НОД (а1,а2,…аr) наз-ся такой их общий дел-ль d, кот делится на всякий др. общ дел-ль. чисел а1,а2,…аr. Обозн. d=НОД(а1,а2,…аr). Итак, d=НОД(а1,а2,…аr) 1. d| а1^d|а2^…d|аr. 2. c=ОД(а1,а2,…аr) => с|d. Алгоритм Евклида. Пусть Ґa,bЄZ, b#0. т.к. отнош-е делимости сохр-ся при измен-и знаков чисел, то НОД(a,b)=НОД(a,-b). Поэтому огран-ся случ-м aЄZ, bЄN. Делим a на b c остатком a=b*q+r1. Если r1=0, т.е. a=b*q, то НОД(a,b)=b. Пусть r#0, 011 c остатком. Если r2 – остаток, то делим r1 на r2 и т.д. Получ сов-ть равенств: a=b*q+r1, 011*q1+r2, 021; r1=r2*q2+r3, 032; … rn-2=rn-1*qn-1+rn, 0nn-1; rn-1=rn*qn. Этот процесс явл-ся конеч, т.к. мы имеем ряд убыв-х целых, кот. фвл-ся неотриц. т.е. непременно придем к остатку на кот-й разд-ся предыд. остаток. Последние рав-ва наз-ют алгор. Евклида для чисел (a,b). Св-ва НОД. 1. Последний не равный 0 остаток в алгоритме Евклида явл-ся НОД(a,b). 2. (ҐmЄN) НОД(a*m,b*m)=m*НОД(a,b).3.m|a^m|b=>НОД(a/m,b/m)=(НОД(a,b))/m. Числа а1,а2,…аr наз-ся взамно-простыми числами, если НОД(а1,а2,…аr)=1. Всякое целое число, кот. делится и на a, и на b, наз-ся общим кратным делителем. Наим. из всех натур-х ОК наз-ся НОК. Св-ва НОК: 1. НОК(a,b)= их произведению, деленному на НОД. 2. Совокуп-ть ОК 2-х чисел совп. с совокуп-ю кратных их НОК. 3. Числа (НОК(a,b)/a) и (НОК(a,b)/b) взаимно-просты. 4. Если a,b вз.-пр., то НОК(a,b)=a*b. 5. (ҐmЄN) НОК(a*m,b*m)=НОК(a,b)*m. Нахождение НОД и НОК Чтобы найти НОД нужно взять произведение общих простых множ-й, вход-х в канонич-е разлож-е этих чисел, причем каждый такой простой множ-ль нужно взять с наим. показ-м. НОК тоже самое, но каждый множ-ль взять с наиб. показ-м.
Вопрос 4. Система рацион-х чисел. Если рассм. мн-во Z, то в Z ур-е a*x=b не всегда разрешимо. => расшир-е кольца целых чисел до поля Q-рац-х чисел. (Др. причина – измерение отрезков не всегда выр-ся целым числом). При этом должны вып-ся усл-я: 1. Z подкольцо кольца Q. 2. ур-е a*x=b, a#0 одноз-но разреш. Ґa,bЄQ. 3. Q должно быть миним. расш. с-ы Z. С-а Q явл-ся полем, кот. наз-ся поле рац-х чисел. Рассм. мн-во Q={p/q| pЄZ,qЄN}. на мн-ве дробей рассм. отнош. равносильности “~”: p/q~k/l p*l=k*q. Покажем, что это отнош-е эквивал-ти. 1. a/b~a/b. т.к. a*b=a*b (рефл-ть). 2. a/b~c/d => c/d~a/b (сим-ть). Проверим a/b~c/d a*b=b*c => c*b=d*a c/d~a/b. 3. a/b~c/d ^ c/d~e/f => a/b~e/f (тран-ть). a/b~c/d ^ c/d~e/f => a*d=c*b ^ c*f=d*e => a*d*c*f=c*b*d*e. a*f=b*e =>a/b~e/f. Если с=0, то все 3 др. 0, т.е. равн-ы. Отнош-е равн-ти дроби на Q явл-ся отнош-м экв-ти => равнос-е дроби также явл-ся эквив-ми. Св-во экв-х дробей: 1. a/b~(a*c)/(b*c) c#0. Всякому отнош-ю эквивл-ти соот-т разбиение на классы экв-ти. Класс эквив-х дробей наз-ся рац-м числом. Рац-е число хар-ся Ґ из своих представителей. Дроби, вход-е в один и тот же класс пред-т ! рац-е число => считаются равными. p/q, где q≠0 наз-ся несократ-й записью, если НОД(a,b)=1. Для Ґ положит-го q сущ-т ! запись в виде несократ-й дроби. Введем на Q отнош-е «меньше» так, что q0. Легко видеть, что отн-е «<» явл-ся отн-м строгог порядка, т.е. оно антиреф., антисим., транзит. И явл-ся отнош-м линейного порядка,т.е. Ґq1,q2ЄQ вып-ся ! из: q12, q1=q2, q1>q2. Можно показ-ть, что для отнош-я => ^ c>0 =>>)>0 (т.к.c>>*c>0 => 1. ВQ нет ни наим, ни наиб. числа. 2. Q – счетное мн-во, т.к. можно устанть биек-е отображ-е, f:Q>--->>
. Пусть А – обл-ть целостности. Кольцо полиномов от 1 неизв-го A[x]=(A[x],у, 1,+, -,*) – обл-ть целостности. => Если степень f(x)=n и степень g(x)=m => . 1. Ґf(x)ЄP[x], f(x)|f(x). 2. f(x), g(x)ЄP[x], g(x)|f(x) и f(x)|g(x) => f(x) и g(x) ассоц-ы, f(x)=cg(x), cЄP[x]. 3. g(x)|f(x) и φ(x)|g(x) =>(x) =>(x)|g(x) =>(x)< степени g(x), но >(x) =>(x) =>(x)|g(x) =>(x)|g(x) =>(x)=НОД(f(x), g(x)). Пусть n(x) - Ґдругой ОД(f(x), g(x)). Рассм-м (1) сверху вниз: n(x)|f(x) и n(x)|g(x) =>(x) =>(x) =>(x) =>(x)=ОД(f(x), g(x)) =>(x)=НОД(f(x), g(x)) =>(x) =>
(x) =>(x) явл-ся ассоциированными.) 2. Ґf(x)ЄP[x], p(x)ЄP[x] – непривомн-н => либо f(x), p(x) взаимно просты, либо p(x)|f(x). (Док-во. Т.к. p(x) неприводимый мн-н, то возм-ы 2 случая:1) НОД(f(x),p(x))=c-const, тогда f(x), p(x) – взаимно просты. 2) НОД(f(x),p(x))=D(x), где D(x)=cp(x), но тогда т.к. D(x)|f(x) => cp(x)|f(x) => (x) неприводимые над полем Р мн-ны. Левые части равны =>(х) =>
, что столбец своб-х чл-в будет выраж-ся через первые r столб-в => и через всю с-у столб-в матницы Ā, т.е. справед-о (2). =>
: V--> – поле скаляров. Ґa,bЄV, Ґα, βЄP. 1. a+b=a => b=0. 2. 0*α=ό. 3. α*ό=ό. 4. a+b=ό => b=(-1)*a=-a. 5. α*a=α*b ^ α≠0 =>a=b. 6. α*a=ό => α=0 или a=ό. 7. α*a=β*a ^ a≠ό =>
=> =>
+r. Из опр. 3 =>что сравнимые по (mod m) числа явл-ся равноостаточными при делении на m. Док-во: 1) опр. 12. Пусть a≡b (mod m) в смысле опр.1, т.е. m|(a-b) => сущ-т tЄZ, a=b+m*t, т.е. a≡b(mod m) в смысле опр.2. Пусть a≡b(mod m) в смысле опр.2, т.е. a=b+m*t => a-b=m*t =>+r =>ЄZ => m|(a-b) =>>) =>=0 => a≡r(mod m). Сл-е 2. Если m|a =>(mod m) =>(mod m) =>) =>(mod m) =>(mod m) =>(mod m) =>) =>(mod m) =>(mod m). 2. a≡b(mod m) =>(mod m). ҐnЄN. 3. a≡b(mod m) =>(mod m) =>)(mod m). 6. В сравн-х по mod m числах можно замен-ть слаг-е и множ-ли с сран-ми с ними числами. 4)На общий делитель взаим-о простой с mod m можно разд-ть обе части сравнения, оставив mod без измен-я. a*d=b*d(mod m) и НОД(d,m)=1 => a≡b(mod m). Док-во. a*d=b*d(mod m)=> m|(a*d-b*d) => m|d*(a-b). т.к. НОД(d,m)=1, то m|(a-b) => a≡b(mod m). Замтим, что если усл-е взаим-ной простоты не выпол-ся, то сокр-е обеих частей на одно и то же число можно привести к нарушению срав-ти. 5)a*d≡b*d(mod m*d) => a≡b(mod m), dЄN. Док-во. a*d≡b*d(mod m*d) => m*d|(a*d-b*d) => m*d|d*(a-b) => m|(a-b) =>) =>
. Св-ва классов-вычитов: 1. ā={a+m*t|ҐtЄZ}. 2. xЄā ^ xЄđ => ā=đ. 3. ҐбЄā => б(с чер-й)=ā. 4. a≡d(mod m) => ā≡đ. 5. a≡0(mod m) => комут-ы, ассоц-ы и связ-ы дист-м законом. Это =>
входят в полную с-у вычитов по mod m, т.е. в Х. Итак, с-а х’ состоит из m чисел и все они попарно не срав-ы между собой => => => . (Док-во. В силу усл-я 3) числа с-ы (1) нах-ся в классах взаимно простых с mod m, причем в силу усл-я 2) они лежат в разных классах. Т.к. число чисел в с-е (1)= φ(m) и число классов взаимно простых с mod m=φ(m), то всякое число из (1) попадает в ! класс взаимно простых по mod m=> ,m)=1. i=1,2,… φ(m) => ’. В левой и правой частях стоит произв-е всех вычитов из привед-й с-ы наим-х полож-х вычитов. Эти произв-я взаимно просты с mod m, т.к. Ґ множ-ль с mod m взаимно прост. =>≡1(mod m), т.к. k= φ(m) =>
. 1. α рефлек-о: (ҐαЄА) (аαа). 2. α симмет-о: (Ґa,bЄA) (aαb => bαa). 3. транз-ть: (Ґа,b,cЄA) (aαb ^ bαc =>
ЄS. Покажем, что так опред-е отнош-е α явл-ся отнош-м экв-ти, т.е. оно рефл-о, сим-о, тран-о. 1)Из (*) => аαа, т.к. Ґ эл-т нах-ся в 1 подмн-ве с самим собой. 2) Из (*) => bαa. aαb => bαa.3)Пусть аαb ^ bαc =>≠Ш, что противоречит требованию 3)разбиения => =>. аαb ^ bαc => Док-во.Пусть α отнош-е эквив-ти на А. Рассм-м смежный класс ҐаЄА, [a]={x|xЄA,xαa}. Покажем, что с-а разлож-я смежных классов обр-т разбиение мн-ва А. Т.к. α рефлек-о, т.е. аαа => [a]≠ Ш. Возьмем произв-й aЄA, aЄ[a] =>A…=>A. Из этих 2-х включений =>…=A. Покажем, что Ґa,bЄA, aαb(с чертой) =>[b]≠Ш => сущ-т сЄ[a] ^ cЄ[b] => aαc ^ cαb => но это противоречит усл-ю aαb(с чертой) => Ґa,bЄA, aαb(с чертой) =>
=a’*b. 2.Рассм-м (2). (x*a)*a’=b*a’. x*(a*a’)=b*a’. x*e=b*a’. 4) В группе имеет место правило сокр-я a*c=b*c => a=b. c*a=c*b => этой группы, если оно само явл-ся группой относ-но установ-й на G опер-и. Чтобы установить явл-ся ли подмн-во А группы G группой нужно проверить 2 усл-я: для мульт-й группы: 1. Ґa,bЄA => abЄA 2. ҐaЄA =>ЄA.; для аддит-й группы: 1. Ґa,bЄA => a+bЄA 2. ҐaЄA =>
Док-во. Пусть А – подгруппа группы G. |G|=n, |A|=k, Док-м, что n|k. Рассм-м левостороннее разложение группы G по подгруппе А. Пусть оно состоит из j классов. Число j наз-ся индексом группы А в группе G. Всякий левый смежный класс хА состоит из k различных Эл-в. Итак, группа G разлаг-ся на j классов, в каждом из которых по k Эл-та => n=kj =>
. 1). A+b=a => b=0. 2) a+b=0 => b=-a. 3) a*0=0*a=0. Док-во. a*0+ab=a(0+b)=ab. a0+ab = ab => a0 = 0. 0a+ba = a(0+b) = ba. 0a+ba = ba => 0a = 0. 4) a(-b) = (-a)b = -ab. Док-во. a(-b)+ab = a(-b+b) = a0=0. a(-b)+ab = 0 => a(-b) = -ab. 5) (-a)(-b) = ab. Док-во. (-a)(-b) = (-a)(-b)+0 = (-a)(-b)+a(-b)+ab = ((-a)(-b)+a(-b))+ab = (-a+a)(-b)+ab = 0(-b)+ab = 0+ab = a(-b)+ab = 0 => . 1. ab = 1 =>. 2. ac = bc ^ c≠0 => a = b. 3. ab = 0 => a = 0 или b = 0. 4. a≠0 ^ b≠0 =>
вектора на число: k-число a’*k=p’ вектора a’ и p’ сонаправленны если k>
Прямая разбивает пло-ть на 2 полуплоскости, та полуплоскость для всех точек которой выпол-ся нер-во: Ax+By+C>
| Если выраж. под модулем >
Плоскость разбивает пространство на 2 полупростр, то полупрст. для всех точек которого выпол-ся нер-во: Ax+By+Cz+D>
Подобие –это преобр. плоскости при котором расстояние между любыми 2 точками изменяется в к >
Подобие –это преобр. плоскости при котором расстояние между любыми 2 точками изменяется в к >
<1>
> x2>y2>
Пусть даны 2 точки А(х1, у2) В(х1,у2) Лучом с началом А проходящим через точку В назовем множество таких точек Х(х,у) что х=х1+t(x2-x1) y=y1+t(y2-y1) где t>
x2>y2>
Понятие – фора научного опознания, отражающая существенное в изучаемых объектах и закрепляемая спец терминами или символьным знаком. Понятие объем которого входит в объем другого понятия называется видовое, а второе родовым. Существуют различные отношения между понятиями: отношение соподчинения – в случае когда одному родовому понятию подчинено несколько ближайших видовых понятий не являющихся перекрещивающимися. Последнее находится в отношении соподчинения; отношения противоречия – понятия отрицают друг друга (четные и нечетные и т.д.); отношения противоположности – в этом отношении находятся понятия (+ и -,< и >
|
|
, при х> |
|
|
| При выборе последовательности рассмотрения понятия числа в школе приходиться учитывать многие факторы. Основными из них яв-ся внутр-е потребности матем-ки (выполнимость операций) и практические потребности (измерение величин) и возможность усвоения материала детьми разного возраста. Первый шаг в методическом построении числ-х сис. – это конечное множество отрезка N чисел. Опираясь на эти знания в нач. шк. Строится весь натуральный ряд. Затем происходит изучение материала о дробях. В 1 кл. уча-ся знают число 0 и операции с ним. К 5 кл. они знают числовое множ-во, существование Z не отрица-х чисел, с небольшой пропидев-й обыкновенных дробей. В дальнейшем изучение числа м/т идти по 3 путям: алгебраический (логич-й), исторический. В шк. принят способ «последовательность»: 1. множ-во Z-целых не «-» чисел с пропиде-й обыкновенных дробей. 2. множ-во не «-» чисел (десяти-е и обыкновенные дроби). 3. рациональные числа. 4. R-числа. Этот путь не лишен недостатков – логические трудности обоснования действий над десятич-ми дробями. При изучении каждого числового множ-ва учитель д/н иметь в виду => 1. Понятие уравн-е тесно связано с понятием корень урав-я, решить уравнение, сис. урав-й. Если уч-ся усваивают эти понятия, то => понимание теории и решения задач. Необх. сис. разъяснять их смысл, приводя примеры. 2. При изучении урав-й уч-ся должны усвоить идею равносильности, использовать сво-ва равносил-и урав-й и тождественных преобразов-й => | -е из нерав-в сис. и найти их общее решение. Для нахождения решений сис. используется координатная прямая, решаются также двойные нерав-ва, которые представляют собой иную запись сис. нерав-в. В 9 кл. изучаются нерав-ва 2-й степени с одной переменной, решение этих неравенств рассматривается как нахождение промежутков, в которых соответствующая кв. функция принимает полож. или отриц. значения. Уч-ся знакомятся с методами интервалов для реш-я несложных рац. нерав-в вида: (x-a)(x-b)(x-c)…(x-f)<=>
|
Метод-е особенности: изучение идет по =>-е равенства и объяснить до какого разряда округлены числа и т.д. В шк. применяется => При «*» и «/» в результате => До выполнения операции более точные данные =>При извлечении корня и при возведении в степень в результате =>6,3). Прав. 5. В промежуточных результатах => | (х)=f(х), то есть площадь есть первообразная от f(х)=>1. Площадь криволинейной трапеции как приращение первообразной непрерывной функции на отрезке: понятие криволинейной трапеции, теорема дающая один из подходов к задаче нахождения площади криволинейной трапеции. 2. Интеграл: второй подход к задаче нахождения площади криволинейной трапеции (предел суммы площадей прямоугольников), понятие интеграла как числа к которому стремятся суммы площадей прямоугольников при n -> Изучение геом вел-н проходит через весь курс математики. В начальной школе уча-ся должны знать обозначения и названия единиц длины и площади. Уметь измерять длину отрезка и ломаной, строить отрезок данной длины, вычислять периметр и площадь прямоугольника. В 5 классе расширяются представления об измерении геометрических величин на примере вычисления S и V. Вводится понятие метрической системы мер в связи с изучением десятичных дробей, изучается градусная мера углов при которых за единицы измерения принимается угол в 1 градус. В 7 классе формулируются основные свойства измерения отрезков: каждый отрезок имеет определенную длину > =c/n, тогда an=m, bn=c =>. Если а и b иррац-ые, тогда a=a0,a1,…,ak,…, b=b0,b1,…,bk,…, a>Ak= a0,a1,…,ak b>k=>
| 1. Сказать о введении координат на плоскости, которые изучались в 8 классе. Напомнить, что с их помощью решались задачи на нахождение коор середины отрезка, расстояние между точками, записывались уравнения прямой и окружности с помощью коор также вводятся тригонометрические выражения. Коор метод можно распространить и на векторы т. е. Каждому век определенным образом приписать пару чисел полностью его характеризующих, т.е. определяющих его основную величину и направление. 2. Проще всего определяются коор век начало которых совпадает с нач. коор. Их коор будут коор конца век. Рассматривается несколько примеров на нахождение коор век с началом в точке О. 3. С векторами начало которых не совпадает с точкой О поступают след образом. Считают, что равные векторы будут иметь и равные координаты. Из рассмотрения конкретного примера ученики догадываются, что коор век есть разность соответствующего конца и начала вектора. Затем дается определение: пусть век а с началом в т.А1 (х1,у1) и концом в точке А2 (х2,у2), тогда коор век а будем называть числа а1=(х2-х1) и а2=(у2-у1) и записывать а(а1,а2). При решении задач => 1. дается определение соответствующей операции в коор форме. 2. доказываются свойства. 3. через весь материал проходят две линии: геометрическая и координатная. 4. вычитание век определяется как операция обратная +. 5. коллинеарность век определяется в геом форме, то есть 2 не =0 век назыв. коллинеарными, если они лежат на одной прямой или на || Е1. 6. действия над векторами в координатной и геом формах используются при изучении курса физики. 7. основное внимание => 1. дается определение соответствующей операции в коор форме. 2. доказываются свойства. 3. через весь материал проходят две линии: геометрическая и координатная. 4. вычитание век определяется как операция обратная +. 5. коллинеарность век определяется в геом форме, то есть 2 не = 0 век назыв. коллинеарными, если они лежат на одной прямой или на || Е1. 6. действия над векторами в координатной и геом формах используются при изучении курса физики. 7. основное внимание => | Одна из осн-ых идей шк. курса геом. – идея геометрич. величины. На этой идее я сейчас остановлюсь. И расскажу о том, что такое геометрич. величина, как ее измеряют, какие геометрич. величины изучаются в шк. курсе мат-ки. Площадь, длина, масса, объем, стоимость, цена – все это величины. Первоначальное знакомство с величинами происходит в нач. шк. где наряду с числом понятие величины явл-ся ведущим. Вел-на это основ. св-во реальных объектов или явл-ийодно и тоже св-во объектов выражают однородные вел-ны. Н-р св-во протяженности объектов. назыв длиной. Длина и площадь разнородные вел-ны. Сами вел-ны обладают рядом св-в: пусть а,в,с – однородные вел-ны. 1. Люб. две вел-ны одного рода сравнимы. (>(a)*е, а=х*е) Измерение вел-ны позвол. свести их сравн. к сравнению их численных значений и операции – к операциям над их численными значениями (мерами). При этом если вел-ны а и в измерены при помощи одной и той же ед. измер., то отношение м/у вел-нами будут такими же как и отношения м/у их численными значениями и наоборот. (в буквенном виде). Численное значение суммы вел-ин равно сумме их численных значений. Если а=х*в, то численное значение а равно произвед. х на численное значение в. В геом. изучаются геом. вел-ны, изучение кот. проходит ч/з весь курс мат-ки. После окончания нач. шк. учащ-ся д. знать назв. и обознач. ед. длины (мм,см,дм,км) и площадей (мм2,см2,дм2,км2), а также должны уметь измерять длину отрезка, ломаной, строить отрезки заданной длины, выч-лять периметр и площадь прямоуг-ка. В 5 кл. представления учащ-ся о геом. вел-нах расширяются, они получ. знания о том, как вычислить площадь некот. фиг., состоящей из прямоуг-ков и как вычисляется объем прямоуг. паралл-педа. В этом же кл. реб. даются формулы для нахождения площ. и объемов некот. геом. фиг. (см. У.-ки). Систематизируются известные св-ва о ед. измер., вводится пон. метрической сист. мер. в связи с изучением десятич. дробей. Также вводится градусная мера. В 7 кл. формулир. основн. св-ва измерения отрезков (длина >0 и деление точкой). В этом же кл. – основные св-ва измер. углов (градусн. мера >
|
|
| | |
|
|
|
|
Виды: внутридисциплинарные; междисциплинарные (м/у общей пед-кой и дидактикой) межнаучные (пед-ка <–>
|
|
|
|
|
|
|
|
|
|
|
|
|
– фиксация на бумаге какого-то проекта. Требования планирования: 1. должно быть научное (при планировании должны быть использованы современные концепции воспитания); 2. целенаправленность; 3. приемственность (следование хорошим традициям); 4. вариативность (возможность изменения какой-то части плана); 5. комплектность. Учителя предметники составляют два вида планов: тематический и поурочный план перспективной воспитательной работы. (диагностика > прогнозирование проектирования > цели > планирование > осуществление плана > | – фиксация на бумаге какого-то проекта. Требования планирования: 1. должно быть научное (при планировании должны быть использованы современные концепции воспитания); 2. целенаправленность; 3. приемственность (следование хорошим традициям); 4. вариативность (возможность изменения какой-то части плана); 5. комплектность. Учителя предметники составляют два вида планов: тематический и поурочный план перспективной воспитательной работы. (диагностика > прогнозирование проектирования > цели > планирование > осуществление плана >
|
|
|
|
|
|
|
|
|
|
|