Суббота, 08 Фев 2025, 11:17
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 6
Гостей: 6
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Сетевые графики


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
11 Апр 2013, 17:01

Министерство общего и профессионального образования РФ.

Уральский государственный университет.


Сетевые графики


Курсовая работа студента

группы ИС-202 Лисицын В.С.

Руководитель Замятин А. П.


Екатеринбург, 1999.

Многие крупные проекты, такие как строительство дома, изготовление станка, разработка автоматизированной системы бухгалтерского учета и т.д., можно разбить на большое количество различных операций (работ). Некоторые из этих операций могут выполняться одновременно, другие — только последовательно: одна операция после окончания другой. Например, при строительстве дома можно совместить во времени внутренние отде­лочные работы и работы по благоустройству территории, однако возводить стены можно только после того, как будет готов фундамент.

Задачи планирования работ по осуществлению некоторого проекта состоят в определении времени возможного окончания как всего проекта в целом, так и отдельных работ, образующих проект; в определении резервов времени для выполнения отдельных работ; в определении критических работ, то есть таких работ, задержка в выполнении которых ведет к задержке выполнения всего проекта в целом; в управлении ресурсами, если таковые имеются и т.п.

Пусть некоторый проект W состоит из работ V1,...,Vn; для каждой работы Vk, известно, или может быть достаточно точно оценено время ее выполнения t(Vk). Кроме того, для каждой работы Vk известен, возможно пустой, список ПРЕДШ(Vk) работ, непосредственно предшествующих выполнению работы Vk. Иначе говоря, работа Vk может начать выполняться только после завершения всех работ, входящих в список ПРЕДШ(Vk).

Для удобства, в список работ проекта W добавим две фиктивные работы s и p, где работа s обозначает начало всего проекта W. а работа p — завершение работ по проекту W. При этом будем считать, что работа s предшествует всем тем работам vÎW, для которых список ПРЕДШ(v) пуст, иначе говоря, для всех таких работ vÎW  положим  ПРЕДШ(v)={s}.  Положим далее ПРЕДШ(s) =Æ, ПРЕДШ(p)={vÎW: v не входит ни в один список ПРЕДШ(w)}, то есть считаем, что работе p предшествуют все те работы, которые могут выполняться самыми последними. Время выполнения работ s и p естественно положить равными нулю:   t(s)=t(p)=0.

Весь проект W теперь удобно представить в виде сети G=(V,E,c). Ориентированный взвешенный граф G=(V,E,c) называется сетью. Сеть может быть представлена матрицей весов дуг, массивами смежностей СЛЕД или ПРЕДШ, или списками СЛЕД[v] или ПРЕДШ[v]. При этом записи в списках смежности состоят из трех компонент: поля имени узла, поля веса соответствующей дуги и поля ссылки на следующую запись), где сеть G=(V,E,c) определим по правилам:

1. V=W, то есть множеством узлов объявим множество работ;

2. E={(v,w) : vÎПРЕДШ(w)}, то есть отношение предшествования задает дуги в сети;

3. c(v,w)=t(w).

Так построенную сеть G часто называют сетевым графиком выполнения работ по проекту W. Легко видеть, что списки смежностей этой сети ПРЕДШ[v] совпадают с заданными для проекта списками предшествующих работ ПРЕДШ(v).

Понятно, что сетевой график любого проекта не должен содержать контуров. Действительно, пусть узлы Vk1,Vk2,...,Vkr=Vk1 образуют контур в сети G. Это означает, что работа Vk2 не может на­чаться раньше, чем будет завершена работа Vk1, работа Vk3раньше, чем завершится работа Vk2, и т.д., и, наконец, Vkr = Vk1 — раньше, чем будет завершена работа Vkr-1. Но тогда никакая из работ Vk1,...,Vkr никогда не сможет быть выполнена. А каждый реальный проект должен допускать возможность его завершения. Следовательно, в сетевом графике нет контуров.

Отсутствие контуров в сети G позволяет пронумеровать работы проекта W таким образом, чтобы для каждой дуги (Vi,Vj) сети G выполнялось условие i<j, то есть каждая дуга идёт из узла с меньшим номером в узел с большим номером. Осущест­вить такую нумерацию узлов сети G можно с помощью алгоритма топологической сортировки. Поэтому в дальнейшем будем считать, что узлы в сети G топологически отсортированы.

Конечной целью построения сетевой модели является получе­ние информации о возможных сроках выполнения как отдельных работ, так и о возможном сроке выполнения всего проекта в це­лом. Обозначим через PBЫП(v) (соответственно PHAЧ(v)) наиболее  ранний  возможный  срок  выполнения работы  v (соответственно наиболее ранний возможный срок начала работы v). Удобно считать, что PBЫП(s)=PHAЧ(s)=0. Поскольку на­чать выполнять работу v можно только после того, как будут выполнены все работы, предшествующие данной работе v, то получим следующие формулы для расчета значений PHAЧ(v) и PBЫП(w):

PHAЧ(v) = МАКС{PBЫП(w): wÎПРЕДШ(v)},

PBЫП(v)= PHAЧ(v) + t(v).

Значение PBЫП(p) дает наиболее ранний возможный срок завершения всего проекта в целом. Приведем запись алгоритма, непосредственно вычисляющего характеристики РНАЧ и РВЫП.

АЛГОРИТМ 1.

Данные: Сетевой график G работ V, заданный списками ПРЕДШ(v), vÎV.

Результаты: Наиболее ранние возможные сроки начала и выполнения работ РНАЧ(v), РВЫП(v), vÎV.

Шаг 1. Объявить возможные ранние сроки начала РНАЧ(v) и выполнения РВЫП(v) работ равными нулю. Текущей вершиной объявить первую вершину vk=v1.

Шаг 2. Всем вершинам v предшествующим текущей вершине vk, значение РНАЧ(vk) присвоить максимум из значений РВЫП(v) и РНАЧ(vk). Значение РВЫП(vk) положить равным значению РНАЧ(vk) плюс время выполнения самой работы текущей вершины t(vk).

Шаг 3. Если имеется следующая вершина (работа) после текущей, то объявить ее текущей вершиной vk, иначе перейти в Шаг 5.

Шаг 4. Вернуться в Шаг 2.

Шаг 5. Выдать наиболее ранние возможные сроки начала и выполнения работ РНАЧ(v), РВЫП(v), vÎV, конец работы алгоритма.

 Пусть T — плановый срок выполнения проекта W. Ясно, что Т должно удовлетворять неравенству Т >= РВЫП(Vn+1).

Через ПВЫП(v) (соответственно ПНАЧ(v)) обозначим наиболее поздний допустимый срок выполнения (начала) работы v, то есть такой срок, который не увеличивает срок Т реализации всего проекта.

Значения возможных и допустимых сроков выполнения работ позволяют определить резервы времени для выполнения той или иной работы. Полный резерв (иногда его называют суммарный) времени выполнения работ определяется по формуле:

PE3EPB(v)=ПHAЧ(v)-PHAЧ(v).

Значение PE3EPB(v) равно максимальной задержке в выпол­нении работы v, не влияющей на плановый срок Т. Понятно, что справедливо и такое равенство: РЕЗЕРВ(v)=ПВЫП(v)-РВЫП(v).

Работы, имеющие нулевой резерв времени, называются критическими. Через любую такую работу проходит некоторый мак­симальный s-p-путь в сети G. Критические работы характеризуются тем, что любая задержка в их выполнении автоматически ведет к увеличению времени выполнения всего проекта.

Приведем запись алгоритма, непосредственно вычисляющего характеристики ПВЫП и ПНАЧ.

АЛГОРИТМ 2.

Данные: Сетевой график G работ V, заданный списками ПРЕДШ(v), vÎV, плановый срок окончания проекта – Т.

Результаты: Наиболее поздние допустимые сроки выполнения и начала работ ПВЫП(v) и ПНАЧ(v).

 

Шаг 1. Объявить для всех работ vÎV значение наиболее позднего срока выполнения работ равным Т – значению планового срока окончание проекта и вершину vp фиктивной работы p объявить текущей vk.

Шаг 2. Присвоить значение ПНАЧ текущей работы vk равным значению ПВЫП работы и вычесть время выполнения текущей работы.

Шаг 3. Присвоить значению ПВЫП(v) для всех работ vÎПРЕДШ(v) предшествующих текущей работе vk минимальное значение из значений ПВЫП выполнения роботы v или ПНАЧ выполнения текущей работы vk, если таковых нет перейти в Шаг 4.

Шаг 4. Если имеется предыдущая вершина (работа) к текущей, то объявить её текущей, иначе перейти в Шаг 6.

Шаг 5. Перейти в Шаг 2.

Шаг 6. Выдать наиболее поздние допустимые сроки выполнения и начала работ ПВЫП(v) и ПНАЧ(v), конец работы алгоритма.


Проиллюстрируем работу приведенных алгоритмов на следующих примерах:

Пример 1: Проект  гаража для стоянки автопогрузчиков.

n Наименование работы Предшеству-ющие работы

Время вы-полнения t(vk)

1 Начало проекта (фиктивн. работа) Нет 0
2 Срезка растительного слоя грунта 1 5
3 Монтаж каркаса 2 30
4 Обшивка стен профнастилом 3 15
5 Кровля из профнастила 3 12
6 Заполнение проема воротами 4 5
7 Масляная окраска ворот и профнастила 5,6 10
8 Щебёночное основание под полы 7 3
9 Асфальтовое покрытие 8 3
10 Уборка строительного мусора после строит. 7 3
11 Конец проекта (фиктивная работа) 9,10 0

Рис 1. Проект гаража для стоянки автопогрузчиков.

Найдем значения наиболее раннего начала и выполнения работ проекта посредством алгоритма 1. Работу алгоритма изложим в виде последовательности выполняемых шагов.

Шаг n Действия выполняемые шагом
1

Объявление значений РНАЧ(v) и РВЫП(v), vÎV равными нулю. Текущая вершина vk=1.

2

Вершин предшествующей первой нет.

РВЫП(1)=РНАЧ(1)+t(1). {РНАЧ(1) стало равным 0}

3

Текущая вершина vk=2.

4 Переход в Шаг 2.
2

РНАЧ(2)=МАКС{РВЫП(1),РНАЧ(2)} {РНАЧ(2) стало равным 0}

РВЫП(2)=РНАЧ(2)+t(2) {РВЫП(2) стало равным 5}.

3

Текущая вершина vk=3.

4 Переход в Шаг 2.
2

РНАЧ(3)=МАКС{РВЫП(2),РНАЧ(3)} {РНАЧ(3) стало равным 5}

РВЫП(3)=РНАЧ(3)+t(3) {РВЫП(3) стало равным 35}.

3

Текущая вершина vk=4.

4 Переход в Шаг 2.
2

РНАЧ(4)=МАКС{РВЫП(3),РНАЧ(4)}{РНАЧ(4) стало равным 35}

РВЫП(4)=РНАЧ(4)+t(4) {РВЫП(4) стало равным 50}.

3

Текущая вершина vk=5.

4 Переход в Шаг 2.
2

РНАЧ(5)=МАКС{РВЫП(3),РНАЧ(5)}{РНАЧ(5) стало равным 35}

РВЫП(5)=РНАЧ(5)+t(5) {РВЫП(5) стало равным 47}.

3

Текущая вершина vk=6.

4 Переход в Шаг 2.
2

РНАЧ(6)=МАКС{РВЫП(4),РНАЧ(6)}{РНАЧ(6) стало равным 50}

РВЫП(6)=РНАЧ(6)+t(6) {РВЫП(6) стало равным 55}.

3

Текущая вершина vk=7.

4 Переход в Шаг 2.
2

РНА

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 211 | Загрузок: 4 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Суббота
08 Фев 2025
11:17


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz