ГЛАВА 1 РЯДЫ И ИНТЕГРАЛ ФУРЬЕ Основные сведения Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство . Число Т называется периодом функции. Отметим некоторые с в о й с т в а этой функции: 1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т. 2) Если функция f(x) период Т , то функция f(ax) имеет период . 3) Если f(x) - периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство . Тригонометрический ряд. Ряд Фурье Если f(x) разлагается на отрезке в равномерно сходящийся тригонометрический ряд: (1) ,то это разложение единственное и коэффициенты определяются по формулам: , где n=1,2, . . . Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а коэффициентами ряда Фурье. Достаточные признаки разложимости функции в ряд Фурье Точка разрыва функции называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке. ТЕОРЕМА 1 (Дирихле). Если периодическая с периодом функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [ ] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной). ТЕОРЕМА 2. Если f(x) периодическая функция с периодом , которая на отрезке [ ] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой). Ряды Фурье для четных и нечетных функций Пусть f(x) - четная функция с периодом 2L , удовлетворяющая условию f(-x) = f(x) . Тогда для коэффициентов ее ряда Фурье находим формулы: = = = 0 , где n=1,2, . . . Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так: Пусть теперь f(x) - нечетная функция с периодом 2L, удовлетворяющая условию f(-x) = - f(x). Тогда для коэффициентов ее ряда Фурье находим формулы: , где n=1,2, . . . Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так: Если функция f(x) разлагается в тригонометрический ряд Фурье на промежутке то , где , , , Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье. Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить. Ряд Фурье по любой ортогональной системе функций Последовательность функций непрерывных на отрезке [a,b], называется ортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b], если выполняется условие Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системе называется ряд: коэффициенты которого определяются равенством: n=1,2,... Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи где n=1,2,... Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке по ортогональной системе называется ряд: , Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1). Комплексная форма ряда Фурье Выражение называется комплексной формой ряда Фурье функции f(x), если определяется равенством , где Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул: (n=1,2, . . .) Задача о колебании струны Пусть в состоянии равновесия натянута струна длинной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости. При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению (1) , где а - положительное число. Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных: (2) и начальных условиях: (3) Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t) 0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения u(x,t)=X(x)T(t), (4) , где , . Подстановка выражения (4) в уравнение (1) дает: Из которого наша задача сводится к отысканию решений уравнений: Используя это условие X(0)=0, X(l)=0, докажем, что отрицательное число, разобрав все случаи. a) Пусть Тогда X”=0 и его общее решение запишется так: откуда и ,что невозможно , так как мы рассматриваем решения, не обращающиеся тождественно в нуль. б) Пусть . Тогда решив уравнение получим , и, подчинив, найдем, что в) Если то Уравнения имеют корни : получим: где -произвольные постоянные. Из начального условия найдем: откуда , т. е. |