Реферат выполнен Верхошанской Светланой Александровной, ученицей 9”Г” класса. МОУ “Ульканская средняя общеобразовательная школа №2”. Улькан 2005 Историческая справка об иррациональных уравнениях. “Источником алгебраических иррациональностей является двузначность или многозначность задачи; ибо было бы невозможно выразить одним и тем же вычислением многие значения, удовлетворяющие одной и той же задаче, иначе, чем при помощи корней…; они же разве только в частных случаях могут быть сведены к рациональностям”. (Лейбниц Г.) Одной из конкретных причин появления математических теорий явилось открытие иррациональностей. Вначале это произошло в пределах геометрических изысканий в виде установления факта несоизмеримости двух отрезков прямой. Значение этого открытия в математике трудно переоценить. В математику, едва ли не впервые, вошла сложная теоретическая абстракция, не имеющая аналога в донаучном общечеловеческом опыте. Вероятно, самой первой иррациональностью, открытой древнегреческими математиками, было число . Можно с определённой уверенностью считать, что исходным пунктом этого открытия были попытки найти общую меру с помощью алгоритма попеременного вычитания, известного сейчас как алгоритм Евклида. Возможно также, что некоторую роль сыграла задача математической теории музыки: деление октава, приводящее к пропорции 1:п=п:2. Не последнюю роль сыграл и характерный для пифагорейской школы общий интерес к теоретико-числовым проблемам. Древние математики нашли довольно быстро логически строгое доказательство иррациональности числа путём сведения этого доказательства к формальному противоречию. Пусть , где m и n – взаимно простые числа. Тогда m2=2n2, откуда следует, что т2 чётное и, следовательно, п2 чётное. Чётно, следовательно и п. Получающееся противоречие (п не может быть одновременно и чётным и нечётным) указывает на неверность посылки, что число рационально. Для исследования вновь открываемых квадратичных иррациональностей сразу же оказалось необходимым разрабатывать теорию делимости чисел. В самом деле, пусть , где p и g - взаимно просты, а п является произведением только первых степеней сомножителей отсюда р2=пg2. Если t – простой делитель п, то р2 (а значит, и р) делится на t. Следовательно, р2 делится на t2. Но в п содержится только первая степень t. Значит g2 (равно как и g) делится на t. Но этот результат формально противоречит предположению, что р и g взаимно просты. Вслед за иррациональностью числа были открыты многие другие иррациональности. Так, Архит (около 428-365 до н.э.) доказал иррациональность чисел вида . Теодор из Кирены (V в. до н.э.) установил иррациональность квадратного корня из чисел 3,5,6,…,17, которые не являются полным квадратом. Теэтет (410-369 до н.э.) дал одну из первых классификаций иррациональностей. С появлением иррациональностей в древнегреческой математике возникли серьёзные трудности как в теоретико-числовом, так и в геометрическом плане. Решение иррациональных уравнений. Уравнения, в которых под знаком корня содержится переменная, называют иррациональными. Таково, например, уравнение . При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство при возведении в квадрат даёт верное равенство 12= (-1)2, 1=1. Иногда удобнее решать иррациональные уравнения, используя равносильные переходы. Пример 1. Решим уравнение . Возведём обе части этого уравнения в квадрат и получим , откуда следует, что , т.е. . Проверим, что полученные числа являются решениями уравнения. Действительно, при подстановке их в данное уравнение получаются верные равенства: и Следовательно, x=3 или x=-3 – решение данного уравнения. Пример 2. Решим уравнение . Возведя в квадрат обе части уравнения, получим . После преобразований приходим к квадратному уравнению , корни которого и . Проверим, являются ли найденные числа решениями данного уравнения. При подстановке в него числа 4 получим верное равенство , т.е. 4 - решение данного уравнения. При подстановке же числа 1 получаем в правой части -1, а в левой части число 1. Следовательно, 1 не является решением уравнения; говорят, что это посторонний корень, полученный в результате принятого способа решения. Ответ: . Пример 3. Решим уравнение . Возведём обе части этого уравнения в квадрат: , откуда получаем уравнение , корни которого и . Сразу ясно, что число -1 не является корнем данного уравнения, т.к. обе части его не определены при . При подстановке в уравнение числа 2 получаем верное равенство , следовательно, решением данного уравнения является только число 2. Пример 4. Решим уравнение . Возведя в квадрат обе части этого уравнения, получаем , , . Подстановкой убеждаемся, что число 5 не является корнем данного уравнения. Поэтому уравнение не имеет решений. Пример 5. Решим уравнение . По определению - это такое неотрицательное число, квадрат которого равен подкоренному выражению. Другими словами, уравнение равносильно системе: Решая первое уравнение системы, равносильное уравнению , получим корни 11 и 6, но условие выполняется только для . Поэтому данное уравнение имеет один корень . Пример 6. Решим уравнение . В отличие от рассмотренных ранее примеров данное иррациональное уравнение содержит не квадратный корень, а корень третьей степени. Поэтому для того, чтобы “избавиться от радикала”, надо возвести обе части уравнения не в квадрат, а в куб: . После преобразований получаем: Итак, , . Пример 7. Решим систему уравнений: Положив и , приходим к системе Разложим левую часть второго уравнения на множители: - и подставим в него из первого уравнения . Тогда получим систему, равносильную второй: Подставляя во второе уравнение значение v, найденное из первого , приходим к уравнению , т.е. . Полученное квадратное уравнение имеет два корня: и . Соответствующие значения v таковы: и . Переходя к переменным х и у, получаем: , т.е. , , , . Преобразование иррациональных выражений. Если знаменатель дроби содержит иррациональное выражение, то часто целесообразно избавиться от последнего. Рассмотрим некоторые типичные случаи: Пример: При непо |