Министерство образования и науки Украины
Донецкий государственный институт искусственного интеллекта
Донецкий лицей «Интеллект»
Кафедра математики и информатики
Научная работа
на тему: «Применение неравенств при решении олимпиадных задач».
( электронный учебник )
Выполнила:
ученица 11-Г класса
Борисенкова О.Д.
Научный руководитель:
Степанов Т.Л.
Донецк 2006
СОДЕРЖАНИЕ
Введение
1 Постановка задачи
2 Актуальность
3 Реализация задачи
3.1 Теоретические сведения
3.2 Решение задач с применением данных неравенств
3.3 Сборник задач
3.4 Тесты
4 Инструкция по пользованию
Выводы
Список использованной литературы
ВВЕДЕНИЕ
При решении задач, предлагаемых на вступительных письменных экзаменах и олимпиадах по математике, могут быть использованы любые известные абитуриентам математические методы. При этом разрешается пользоваться и такими, которые не изучаются в общеобразовательной школе.
Все это свидетельствует о необходимости самостоятельного изучения абитуриентами математических методов, в основе которых лежат понятия и положения, не входящие в программу по математике общеобразовательной школы. К таким понятиям, например, относятся неравенства Коши, Коши-Буняковского, Бернулли и Йенсена.
1. ПОСТАНОВКА ЗАДАЧИ
Таким образом, целью данной работы является разработка электронного обучающего пособия, в котором будет предложен материал по выбранной теме. Т.е. в учебнике будут предоставлены теоретические сведения по всем неравенствам, примеры применения этих неравенств в решении олимпиадных задач, сборник задач для самостоятельного решения, решения к ним, а также тестовые вопросы, которые позволят оценить себя и проверить уровень полученных знаний.
Для реализации поставленной задачи был выбран язык электронной разметки текста HTML.
2. АКТУАЛЬНОСТЬ
Данная разработка рассчитана на учащихся, которые имеют довольно-таки высокий уровень знаний в области математики, причем как в пределах, так и вне школьной программы, но все равно хотят его повысить. Т.е. этот учебник будет очень полезным для самостоятельного изучения темы и подготовки к олимпиадам ІІ-ІІІ этапов.
Также очень удобен и прост в применении, для работы с ним не требуется никаких специальных программ или дополнительных приложений, кроме стандартного Internet-браузера.
Важным пунктом является то, что в учебнике собрана информация по теме неравенств, которую в принципе довольно-таки сложно найти, причем так, чтобы она была в одном и том же печатном издании. Большая часть сведений по некоторым неравенствам была найдена только в периодических изданиях, журналах. Здесь же все собрано воедино, информация представлена кратко, но исчерпывающе для того, чтобы разобраться и понять.
3. РЕАЛИЗАЦИЯ ЗАДАЧИ
3.1 Теоретические сведения
Неравенство Йенсена
Теорема (неравенство Йенсена):
Пусть
– функция, выпуклая на некотором интервале, x1, x 2, …, x n – произвольные числа из этого интервала, а α1, α2, …, αn – произвольные положительные числа, сумма которых равна единице. Тогда:
. (1)
Доказательство:
Рассмотрим на графике функции
точки А1, А2, …, Аn с абсциссами х1, x2, …, xn. Расположим в этих точках грузы с массами, m2, …, mn. Центр масс этих точек имеет координаты
.
Так как точки А1, А2, …, Аn принадлежат надграфику выпуклой функции, то и их центр масс также принадлежит надграфику (ибо надграфик – выпуклая фигура). А это означает, что ордината центра масс М не меньше ординаты точки на графике с той же абсциссой (рис. 1), т.е.
. (2)
рис. 1
Для завершения доказательства остаётся положить m1= α1, …, mn= αn.
Однако есть два важных замечания. Во-первых, в процессе доказательства неравенства Йенсена (1) мы доказали неравенство (2). На самом деле эти неравенства равносильны. Положив в неравенстве (1) $IMAGE7$ (i=1, 2, ..., n), мы получаем неравенство (2). Поэтому естественно эти два неравенства называются неравенствами Йенсена. Неравенство (1) выглядит более компактно, однако для приложений удобней пользоваться неравенством (2). Во-вторых, если функция $IMAGE8$ вогнутая, то для неё неравенства Йенсена (1) и (2) меняются на противоположные. Чтобы доказать это, достаточно рассмотреть выпуклую функцию $IMAGE9$.
Неравенство Коши-Буняковского
На первый взгляд, неравенство Йенсена не производит особого впечатления: слишком общо выглядит формулировка. Однако дальше можно убедиться, что это впечатление обманчиво.
Продемонстрировать силу неравенства Йенсена можно на конкретном примере. А именно, доказать знаменитое неравенство Коши-Буняковского $IMAGE10$, где a1, a2, …, an, b1, b2, …, bn – произвольные положительные числа.
Доказательство:
Как мы знаем, функция $IMAGE11$ - выпуклая. Напишем для этой функции неравенство Йенсена (2):
$IMAGE12$, (mi > 0).
Следовательно, $IMAGE13$. Положив $IMAGE14$, получим требуемое неравенство.
Неравенство Коши
При решении многих задач часто используется классическое неравенство Коши о среднем арифметическом и среднем геометрическим неотрицательных чисел.
Пусть x1, x 2, …, x n – неотрицательные числа. Средним арифметическим этих чисел называется число –
$IMAGE15$.
Средним геометрическим чисел x1, x 2, …, x n называется число –
$IMAGE16$.
Теорема 1. Если x1, x 2, …, x n – неотрицательные числа, то имеет место неравенство
$IMAGE17$. (1)
Причём знак равенства в нем достигается тогда и только тогда, когда все числа равны.
Соотношение (1) называется неравенством Коши. При n=2 неравенство Коши следует из очевидного неравенства
$IMAGE18$. Действительно, $IMAGE19$, откуда
$IMAGE20$. (2)
Отметим, что знак равенства в (2) имеет место тогда и только тогда, когда x1=x2.
Пусть x1, x 2, …, x n – положительные числа. Средним гармоническим (средним пропорциональным) этих чисел называется число –
$IMAGE21$.
Теорема 2. Если x1, x 2, …, x n – положительные числа, то имеют место неравенства
An ≥ Gn ≥ Hn.
Действительно, применяя к числам $IMAGE22$ неравенство Коши, получаем
$IMAGE23$ , (3)
откуда Gn ≥ Hn.
Пусть x1, x 2, …, x n – произвольные числа. Средним квадратическим этих чисел называется число –
$IMAGE24$.
Теорема 3. Если x1, x 2, …, x n – положительные числа, то имеют место неравенства
Kn ≥ An ≥ Gn ≥ Hn , или
$IMAGE25$. (4)
Причём знак равенства в (4) достигается тогда и только тогда, когда все числа равны.
Для двух чисел неравенство (4) можно записать как
$IMAGE26$,
которое очень легко доказать с помощью простых преобразований. А именно,
$IMAGE27$
аналогично доказывается и для n чисел, откуда Kn ≥ An.
Неравенство Бернулли
Ещё один способ решения некоторых олимпиадных задач – это использование неравенства Бернулли, которое иногда может значительно облегчить задачу. «Классическое» неравенство Бернулли формируется следующим образом:
Теорема. Для x > -1 и произвольного натурального n имеет место
$IMAGE28$ (1)
причем равенство в (1) достигается при x=0, n=0 или n=1.
Однако кроме (1) существует и более общее неравенство Бернулли, которое содержит в себе два неравенства:
если n<0 или n>1, то
$IMAGE29$, (2)
если 0<n<1, то
$IMAGE30$, (3)
где x > -1.
Следует отметить, что равенства (2) и (3) имеют место лишь при x=0.
Доказательство(I способ):
$IMAGE31$, где xi – числа одного и того же знака и $IMAGE32$.
Применяем метод математической индукции.
Проверяем неравенство для n=1: $IMAGE33$. Неравенство верно.
Пусть неравенство верно для n членов, т.е. верно неравенство
$IMAGE31$.
Умножим его на неотрицательное число 1+xn+1 (оно неотрицательно, т.к. $IMAGE35$). Получим:
$IMAGE36$.
Т.к. xi одного знака, произведения в правой части положительны, и если их отбросить, неравенство только усилится. Получаем:
$IMAGE37$.
Как мы видим, неравенство верно и для n+1 членов, а значит верно для любых n.
Доказательство(II способ):
Также применяем метод математической индукции.
При n=1 имеем $IMAGE38$, $IMAGE39$. Утверждаем, что при n=k неравенство верно: $IMAGE40$. Тогда при n=k+1 имеем
$IMAGE41$.
Неравенство доказано.
Весовое (общее) неравенство Коши
Ранее мы рассмотрели так называемое классическое неравенство Коши. Однако очень большое значение имеет также одно важное обобщение неравенства Коши – это общее, или весовое, неравенство Коши.
Теорема. Для любых действительных положительных чисел m1, m2, …, mn и для любых неотрицательных x1, x2, …, xn имеет место неравенство
$IMAGE42$. (1)
Числа m1, m2, …, mn называются весовыми коэффициентами.
Неравенство (1) выполняется и для неотрицательных весовых коэффициентов m1, m2, …, mn, но в этом случае необходимо требовать, чтобы знаменатель левой части (1) не превращался в ноль и выражения $IMAGE43$имели смысл (т.е. не все m1, m2, …, mn равны нулю и числа xi и mi одновременно не равнялись нулю).
Понятно, что при m1= m2= …= mn, весовое неравенство Коши превращается в обыкновенное неравенство Коши.
Выражение, которое стоит в левой части (1), называется весовым средним арифметическим, а то, которое в правой – весовым средним геометрическим.
Неравенство (1), для натуральных m1, m2, …, mn, непосредственно следует из обыкновенного неравенства Коши:
$IMAGE44$. (2)
Неравенство (1) с неотрицательными рациональными весовыми коэффициентами легко привести к случаю, когда $IMAGE45$.
3.2 Решение задач с применением данных неравенств
Неравенство Йенсена
Задача:
Пусть a1,…, an > 0, $IMAGE46$. Доказать $IMAGE47$.
Решение:
Записываем неравенство Йенсена для f(x)=x2, mi=n. Получаем:
$IMAGE48$, $IMAGE49$, $IMAGE50$,
что и требовалось доказать.
Неравенство Коши-Буняковского
Задача:
Пусть a+b+c=1. Доказать, что $IMAGE51$.
Решение:
Из неравенства Коши-Буняковского имеем
$IMAGE52$.
А отсюда имеем, что $IMAGE51$.
Неравенство Коши
Задача:
Пусть a, b, c – положительные числа, сумма которых равна единице. Доказать, что
(1+a)(1+b)(1+c) ≥ 8(1-a)(1-b)(1-c).
Решение:
Поскольку a+b+c=1, то 1+a= (1-b)+(1- c). Используя неравенство Коши между средним арифметическим и средним геометрическим $IMAGE54$, получаем
$IMAGE55$.
Аналогично
$IMAGE56$,
$IMAGE57$.
Перемножая все три неравенства, получаем искомое неравенство.
Неравенство Бернулли
Задача:
Решить уравнение
$IMAGE58$.
Решение:
К каждому слагаемому левой части уравнения применяем неравенство Бернулли, тогда
$IMAGE59$,
причем равенство возможно лишь при $IMAGE60$, т.е. x=±1. Следовательно, x=±1 – корни уравнения.
Весовое (общее) неравенство Коши
Задача 1:
Для действительных положительных чисел a, b доказать неравенство $IMAGE61$.
Решение:
По весовому неравенству Коши ( $IMAGE62$), имеем
$IMAGE63$.
Для завершения доказательства осталось учесть очевидное неравенство $IMAGE64$. Равенство достигается при a=b.
Задача 2:
Для произвольных a,b≥0 доказать неравенство
$IMAGE65$(1).
Решение:
По весовому неравенству Коши имеем,