Вторник, 01 Июл 2025, 17:21
Uchi.ucoz.ru
Меню сайта
Форма входа
Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51666


Онлайн всего: 4
Гостей: 4
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Приближенный метод решения интегралов. Метод прямоугольников (правых, средних, левых)


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
11 Апр 2013, 02:07

Лабораторная работа № 4.

Приближенный метод решения интегралов.

Метод прямоугольников (правых, средних, левых).

Гребенникова Марина

12-А класс

Многие инженерные задачи, задачи физики, геометрии и многих других областей человеческой деятельности приводят к необходимости вычислять определенный интеграл вида    где f(x) -данная функция, непрерывная на отрезке [a; b]. Если функция f(x) задана формулой и мы умеем найти неопределенный интеграл F(x), то определенный интеграл вычисляется по формуле Ньютона-Лейбница:
Если же неопределенный интеграл данной функции мы найти не умеем, или по какой-либо причине не хотим воспользоваться формулой Ньютона-Лейбница или если функция f(x) задана графически или таблицей, то для вычисления определенного интеграла применяют приближенные формулы. Для приближенного вычисления интеграла  можно использовать метод прямоугольников (правых, левых, средних). При вычислении интеграла следует помнить, каков геометрический смысл определенного интеграла. Если f(x)>=0 на отрезке [a; b], то численно равен площади фигуры, ограниченной графиком функции y=f(x), отрезком оси абсцисс, прямой x=a и прямой x=b (рис. 1.1) Таким образом, вычисление интеграла равносильно вычислению площади криволинейной трапеции.

Разделим отрезок [a; b] на n равных частей, т.е. на n элементарных отрезков. Длина каждого элементарного отрезка .

Точки деления будут: x0=a; x1=a+h; x2=a+2*h, ... , xn-1=a+(n-1)*h; xn=b.

Числа y0, y1, y2, ... , yn являются ординатами точек графика функции, соответствующих абсциссам x0, x1, x2, ... , xn (рис. 1.2).

Строим прямоугольники. Это можно делать несколькими способами:

Левые прямоуголики (слева на право)

Правые прямоугоники (построение справа на лево)

Средние прямоугольники (посредине)

Из рис. 1.2 следует, что площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из n прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы n элементарных прямоугольников.                                 

       h=(b-a)/n –ширина прямоугольников

Формула левых прямоугольников:

(1.3)

Формула правых прямоугольников:

(1.4)

Формула средних прямоугольников.

 Sсредих= (Sправых + Sлевых) /2

(1.5)


Программа вычисления  по методу левых прямоугольников.

Program levii;{Метод левых прямоугольников}
            uses crt;
                    var i,n:integer; a,b,h,x,xb,s:real;
        function f(x:real):real;
        begin f:=(1/x)*sin(3.14*x/2); end;
begin
           clrscr;
     write('Введите нижний предел интегрирования '); readln(a);
     write('Введите верхний предел интегрирования '); readln(b);
     write('Введите количество отрезков '); readln(n);
               h:=(b-a)/n; s:=0; xb:=a;
                      for i:=0 to n-1 do
                      begin x:=xb+i*h; s:=s+f(x)*h; end;
    writeln('Интеграл равен ',s:12:10); readln;
end.

a=1 b=2                n=10             S= 18,077

a=1 b=2               n=20             S= 18, 208

a=1 b=2               n=100           S= 18, 270

Программа вычисления  по методу правых прямоугольников.


Program pravii; {Метод правых прямоугольников}
                  uses crt;
                            var i,n:integer; a,b,h,x,xb,s:real;
          function f(x:real):real;
          begin f:=(1/x)*sin(3.14*x/2); end;
begin
               clrscr;
                write('Введите нижний предел интегрирования '); readln(a);
                write('Введите верхний предел интегрирования '); readln(b);
                write('Введите количество отрезков '); readln(n);
                   h:=(b-a)/n; s:=0; xb:=a;
                              for i:=1 to n do
                               begin x:=xb+i*h; s:=s+f(x)*h; end;
 
      writeln('Интеграл равен ',s:12:10); readln;
end.

a=1 b=2 n=10             S=18,05455

a=1 b=2 n=20             S=18,55555

a=1 b=2 n=100           S= 18,2734

Программа вычисления  по методу средних прямоугольников.


Program srednii; {Метод средних прямоугольников}
                 uses crt;
                    var i, n: integer; a, b, dx, x, s, xb : real;
        function f(x : real):real;
        begin f:=(1/x)*sin(3.14*x/2); end;
begin
                     clrscr;
         write('Введите нижний предел интегрирования '); readln(a);
         write('Введите верхний предел интегрирования '); readln(b);
         write('Введите количество отрезков '); readln(n);
               dx:=(b-a)/n; xb:=a+dx/2;
                     for i:=0 to n-1 do
                     begin x:=xb+i*dx; s:=s+f(x)*dx; end;
 
 write('Интеграл равен ',s:15:10); readln;
end.

a=1 b=2 n=10             S=18,07667

a=1 b=2 n=20             S=18,368

a=1 b=2 n=100           S= 18,156

 

Заключение и выводы.

Таким образом очевидно, что при вычислении определенных интегралов методами прямоугольников не дает нам точного значения, а только приближенное.

Чем больше значение n, тем точнее значение интеграла..

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 187 | Загрузок: 3 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Вторник
01 Июл 2025
17:21


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz