Среда, 08 Май 2024, 04:37
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51635


Онлайн всего: 5
Гостей: 5
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Основные понятия математического анализа


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
09 Апр 2013, 03:05

Содержание

Двойные интегралы

Определение определенного интеграла

Правило вычисления двойного интеграла.

Вычисление объемов тел с помощью двойного интеграла

Вычисление площадей поверхностей фигур с помощью двойного интеграла.

Тройные интегралы

Вычисление объемов тел с помощью тройного интеграла.

Несобственные интегралы.

Дифференциальные уравнения.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными

2. Однородные дифференциальные уравнения первого порядка

3. Линейные дифференциальные уравнения

4. Уравнения Бернулли

Дифференциальные уравнения второго порядка.

Три случая понижения порядка.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Комплексные числа

Геометрическое изображение комплексных чисел

Действия над комплексными числами.

Произведение.

Частное.

Возведение в степень.

Извлечение корня

Ряды.

Числовые ряды.

Свойства числовых рядов.

Знакоположительные ряды

Признаки сходимости и расходимости знакоположительных рядов.

Знакопеременные и знакочередующиеся ряды.


ДВОЙНЫЕ ИНТЕГРАЛЫ

Определение определенного интеграла

- интегральная сумма.

Геометрический смысл ОИ: равен площади криволинейной трапеции.

Аналогично ОИ выводится и двойной интеграл.

Пусть задана функция двух переменных z=f(x,y), которая определена в замкнутой области S плоскости ХОУ.

Интегральной суммой для этой функции называется сумма

Она распространяется на те значения i и к, для которых точки (xi,yk) принадлежат области S.


Двойной интеграл от функции z=f(x,y), определенной в замкнутой области S плоскости ХОУ, называется предел соответствующей интегральной суммы.

$IMAGE6$

Правило вычисления двойного интеграла

Двойной интеграл вычисляется через повторные или двукратные интегралы. Различаются два основных вида областей интегрирования.

$IMAGE7$


1. (Рис.1) Область интегрирования S ограничена прямыми х=а, х=в и кривыми

$IMAGE8$.

Для такой области двойной интеграл вычисляется через повторный по формуле:

$IMAGE9$

Сначала вычисляется внутренний интеграл:

При вычислении внутреннего интеграла ‘у’ считается переменной, а ‘х’-постоянной.

2. (Рис.2) Область интегрирования S ограничена прямыми у=С, у=d и кривыми

$IMAGE10$.

Для такой области двойной интеграл вычисляется через повторный по формуле:

$IMAGE11$

Сначала вычисляется внутренний интеграл, затем внешний.

При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной.

3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.

Вычисление объемов тел с помощью двойного интеграла

$IMAGE12$

Объем тела, ограниченного сверху поверхностью z=f(x,y), снизу- плоскостью z=0 (плоскость ХОУ) и с боков- цилиндрической поверхностью, вырезающей на плоскости ХОУ область S, вычисляется по формуле:


$IMAGE13$

Вычисление площадей поверхностей фигур с помощью двойного интеграла

Если гладкая поверхность задана уравнением z=f(x,y), то площадь поверхности (Sпов.), имеющей своей проекцией на плоскость ХОУ область S, находится по формуле:

$IMAGE14$- площадь поверхности.


ТРОЙНЫЕ ИНТЕГРАЛЫ

Определяется аналогично двойному интегралу.

Тройной интеграл от функции U=f(x,y,z), распространенным на область V, называется предел соответствующей трехкратной суммы.

$IMAGE15$

Вычисление тройного интеграла сводится к последовательному вычислению обыкновенных (однократных) нтегралов.

Вычисление объемов тел с помощью тройного интеграла

Объем тела вычисляется по формуле:

$IMAGE16$


НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Это интегралы: - с бесконечными пределами; - от неограниченной функции.

Первый вид

Несобственные интегралы с бесконечными пределами имеют вид:

$IMAGE17$; $IMAGE18$; $IMAGE19$

Несобственные интегралы от функции в пределах от (а) до ( $IMAGE20$) определяются равенством.

1. $IMAGE21$; 2. $IMAGE22$; 3. $IMAGE23$

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.

Второй вид

Несобственные интегралы от неограниченной функции имеют вид: $IMAGE24$, где существует точка “с” (точка разрыва) такая, что $IMAGE25$; $IMAGE26$, т.е. $IMAGE27$(в частности c=a; c=b).

Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при $IMAGE28$или $IMAGE29$, то полагаем: $IMAGE30$

Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится, если пределы не существуют или равны бесконечности - то расходятся.


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

1. Дифференциальное уравнение- уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .

Символически дифференциальное уравнение выглядит:

F(x,y,y’,y’’…,y(n))=0 или $IMAGE31$.

2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:

Пример.

F(x,y,y’)=0- дифференциальное уравнение первого порядка.

F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.

3. Решением дифференциального уравнения называется всякая функция $IMAGE32$, которая при подстановке в уравнение, обращает его в верное тождество.

Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.

Пример.

Дифференциальное уравнение первого порядка.

Общее и частное решения.

F(x,y,y’)=0

Это уравнение можно привести к виду y’=f(x,y).

Интегрируем уравнение.

После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.

Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).

Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.

Частное решение.

Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б). $IMAGE33$; в). у(х0)=у0.

Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.

Подставляя $IMAGE34$ в начальное условие $IMAGE33$, находим вполне определенные значения постоянной С. Тогда $IMAGE36$ является частным решением уравнения.

Геометрически частное решение обозначает: начальное условие задает некоторую точку на плоскости и из семейства кривых (общее решение) выбирается та единственная кривая, которая проходит через эту точку.

Теорема существования и единственности решения дифференциального уравнения (теорема Коши).

Если в дифференциальном уравнении y=f(x,y) функция f(x,y) и ее частная производная $IMAGE37$ определены и непрерывны в некоторой области Д на плоскости ХОУ, то какова бы ни была внутренняя точка (х0,у0) этой области, данное уравнение имеет единственное решение $IMAGE38$, удовлетворяющее начальному условию у=у0 при х=х0.

Геометрически смысл заключается в следующем: каждой точке (х0,у0) области Д соответствует только одна интегральная кривая, проходящая через эту точку (каждой точке соответствует только одно частное решение).

Замечание. “Найти частное решение”=“Решить задачу Коши”.

Существует 4 вида дифференциальных уравнений первого порядка.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными.

Дифференциальные уравнения первого порядка в общем виде можно записать либо через производные F(x,y,y’)=0, либо через дифференциалы

$IMAGE39$.

Дифференциальное уравнение- уравнение с разделяющимися переменными, если его можно представить в виде:

- $IMAGE40$- через производную.

- $IMAGE41$- через дифференциал.

В этих уравнениях в произведениях стоят функции, каждая из которых зависит от одной переменной (х или у). Т.е. уравнение будет уравнением с разделяющимися переменными, если его можно преобразовать так, чтобы в одной его части была только одна переменная, а в другой – только другая.

Замечание. При решении дифференциальное уравнение ответу можно придать различную форму в зависимости от того, как записана произвольная постоянная С.

Решение.

- $IMAGE42$

$IMAGE43$; $IMAGE44$-интегрируем и получаем решение. $IMAGE45$


- $IMAGE46$

$IMAGE47$; $IMAGE48$

Однородные дифференциальные уравнения первого порядка

Функция f(x,y) называется однородной функцией n–го измерения, если при любом $IMAGE49$ выполняется условие: $IMAGE50$.

Дифференциальное уравнение y’=f(x,y) есть однородное, если функция f(x,y) является однородной функцией нулевого измерения.

Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 однородное, если P(x,y) и Q(x,y) являются однородными функциями одного и того же измерения.

P(x,y)dx=-Q(x,y)dy; $IMAGE51$

Однородное уравнение всегда можно привести к виду $IMAGE52$ и с помощью замены $IMAGE53$ однородное уравнение всегда приводится к уравнению с разделяющимися переменными ( $IMAGE53$; y=xt; y’=t+xt’).

Линейные дифференциальные уравнения

ЛДУ- уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.

Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’

U’V+UV’+P(x)UV=Q(x)

V(U’+P(x)U)+UV’=Q(x)


Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:

1). U’+P(x)U=0 находим U. $IMAGE55$ 2). UV’=Q(x) находим V. $IMAGE56$. С ставится только при вычислении второго уравнения.

Замечание. Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.

Уравнения Бернулли

УБ- дифференциальные уравнения вида y’+P(x)y=Q(x)*yn, где

$IMAGE57$- т.к. при этих значениях уравнение будет линейным.

УБ решаются так же, как и линейные.

Дифференциальные уравнения второго порядка

Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0

Как и в случае дифференциальных уравнений первого порядка для решения дифференциальных уравнений второго порядка существуют общее и частное решения. Но, если для дифференциальных уравнений первого порядка решение зависело от одной константы С, то для дифференциальных уравнений второго порядка решение зависит от двух постоянных: $IMAGE58$- общее решение.

Если заданы начальные условия (у=у0, у=у0 при х=х0), то получаем частное решение, удовлетворяющее этим начальным условиям.

Начальные условия так же могут задаваться в виде:

у=у0 при х=х0; у=у1 при х=х1.


Три случая понижения порядка

1. Случай непосредственного интегрирования

F(x,y”)=0

y’’=f(x)- решение этого уравнения находится путем двукратного интегрирования.

$IMAGE59$; $IMAGE60$; $IMAGE61$; $IMAGE62$

2. Когда дифференциальное уравнение явно не содержит у, т.е. F(x,y’,y”)=0

С помощью замены у’=р; $IMAGE63$ это уравнение приводим к уравнению первого порядка $IMAGE64$.

3. Когда диффер

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 172 | Загрузок: 3 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Среда
08 Май 2024
04:37


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz