Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции. Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики. Решение: Рассмотрим 1-ю функцию y = arcsin(1/x) Д(f): | 1/x | ≤ 1 , | x | ≥ 1 , ( - ∞ ; -1 ] U [ 1; + ∞ ) Функция нечетная ( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;π/2] ) Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-π/2; π/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x) Д(f): ( - ∞ ; -1 ] U [ 1; + ∞ ) Пример №2. Исследовать функцию y=arccos(x2). Решение: Д(f): [-1;1] Четная f(x) убывает на пр. [0;1] f(x) возрастает на пр. [-1;0] Пример №3. Исследовать функцию y=arccos2(x). Решение: Пусть z = arccos(x), тогда y = z2 f(z) убывает на пр. [-1;1] от π до 0. f(y) убывает на пр. [-1;1] от π2 до 0. Пример №4. Исследовать функцию y=arctg(1/(x2-1)) Решение: Д(f): ( - ∞ ; -1 ) U ( -1; 1 ) U ( 1; +∞ ) Т.к. функция четная, то достаточно исследовать функцию на двух промежутках: [ 0 ; 1 ) и ( 1 ; +∞ ) X | 0 | < x < | 1 | < x < | +∞ | u=1/(x2-1) | -1 | ↘ | + ∞ - ∞ | ↘ | 0 | y=arctg(u) | - π/4 | ↘ | π/2 - π/2 | ↘ | 0 | Тригонометрические операции над аркфункциями Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение. В силу определения аркфункций: sin(arcsin(x)) = x , cos(arccos(x)) = x (справедливо только для x є [-1;1] ) tg(arctg(x)) = x ,ctg(arcctg(x)) = x (справедливо при любых x ) Графическое различие между функциями, заданными формулами: Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями. Аргумент функция | arcsin(x) | arccos(x) | arctg(x) | arcctg(x) | sin | sin(arcsin(x))=x | | | | cos | | x | | | tg | | | x | 1 / x | ctg | | | 1 / x | x | Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже: Т.к. cos2x + sin2x = 1 и φ = arcsin(x) Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный. Значит, имеем Из тождества следует: Имеем Ниже приведены образцы выполнения различных преобразований посредством выведения формул. Пример №1. Преобразовать выражение Решение: Применяем формулу , имеем: Пример №2. Подобным же образом устанавливается справедливость тождеств: Пример №3. Пользуясь Пример №4. Аналогично можно доказать следующие тождества: Пример №5. Положив в формулах ,и , получим: , Пример №6. Преобразуем Положив в формуле , Получим: Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная. Соотношения между аркфункциями Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг. Теорема. При всех допустимых х имеют место тождества: Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов). Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности. Пусть, например, рассматривается дуга α, заключенная в интервале (-π/2; π/2). Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sinα θ заключена,
Х> При отрицательных значениях Х имеем Х<0, а при положительных X>
При x>
При x > 0, y > При x > 0, y > В этом случае x > 0, y >
; xy >
|