МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Х.М. Бербекова
Математический факультет
Кафедра геометрии и высшей алгебры
Лакунова Залина
Дипломная работа
«О некоторых применениях алгебры матриц»
Научный руководитель:
д.ф.-м.н.,проф.каф. Г и В А /В.Н.Шокуев /
Рецензент:
к.ф.-м.н.,доцент /В.М.Казиев/
Допущена к защите 2002г.
Заведующий кафедрой
к.ф.-м.н.,доцент /А.Х.Журтов/
Нальчик 2002
Оглавление
стр.
Введение 3
§1. О правиле Крамера 4
§2. Применение циркулянтов малых порядков в теории чисел 9
§3. Матричный вывод формулы Кардано 17
Литература 21
Отзыв
О дипломной работе «О некоторых применениях алгебры матриц».
Студентки 6 курса МФ специальности «математика» Лакуновой З.
В данной дипломной работе рассматривается новые применения матриц в теории систем линейных уравнений, теории чисел и теории алгебраических уравнений малых степеней.
В §1 дается новый (матричный) вывод правила Крамера для решения любых квадратных систем линейных уравнений с неравным нулю определителем.
В §2 получено тождество (1) , которое используется для доказательства некоторых теоретико-числовых фактов (предложения 1-4); при этом основную роль играют матрицы- циркулянты и их определители. Здесь попутно доказана теорема о среднем арифметическом и среднем геометрическом трех положительных чисел.
В §3 дается новый вывод правила Кардано для решения кубических уравнений; его можно назвать «матричным выводом» , поскольку он опирается на свойства циркулянта (третьего порядка).
Считаю, что результаты получения в дипломной работе студентки Лакуновой З. удовлетворяют требованиям, предъявляемым к дипломным работам, и могут быть допущены к защите.
Предварительная оценка – «хорошо»
д.ф.-м.н., проф.каф. Г и ВА /В.Н.Шокуев/
§1. О правиле Крамера
В литературе известны разные способы решения Крамеровой системы линейных алгебраических уравнений. Один из них – матричный способ – состоит в следующем.
Пусть дана Крамерова система, т.е. квадратная система линейных уравнений с неизвестными
(1)
Определитель которой отличен от нуля:
(2)
Систему (1) можно представить в виде одного матричного уравнения
(3)
где - матрица коэффициентов при неизвестных системы (1),
(4)
- столбец (Матрица-столбец) неизвестных
- столбец свободных членов системы (1)
Так как , то матрица невырожденная и для нее существует обратная матрица . Умножив равенство (3) на (слева), получим (единственное) решение системы в следующей матричной форме (в предположении, что она совместима и - ее решение)
,
где обратная матрица имеет вид:
( -алгебраическое дополнение элемента в определителе )
Другой известный способ можно назвать методом алгебраических дополнений. Его использование предполагает владение понятием алгебраического дополнения как и в матричном способе, теоремой о разложении определителя по столбцу (строке), теоремами о замещении и об аннулировании.
Предлагаемый нами новый метод опирается на теорему Коши-Бине об определителе произведения матриц.
Суть этого метода можно понять легко, если сначала рассмотрим случай . Очевидно, что при выполняются следующие матричные равенства (если задана система (1)):
Переходя к определителям в этих равенствах и обозначив определители правых частей соответственно через получим формулы Крамера:
( )
(Правило Крамера)
Переход к общему случаю Крамеровых систем (1) порядка ничего по существу не меняет. Просто следует заметить, что матрица с определителем получается из единичной матрицы заменой -го столбца столбцом неизвестных:
(5)
Теперь из равенств
,
где - матрица, получающаяся заменой - го столбца матрицы столбцом свободных членов системы (1), причем к формулам Крамера, взяв определители от обеих частей в каждом равенстве:
, откуда ввиду имеем
.
(здесь получается из , как и из ).
Другой, еще более короткий способ отыскания решения системы (1) состоит в следующем (по-прежнему ): пусть система (1) совместна и числа (после переобозначений) образуют ее решение. Тогда при имеем, используя два линейных свойства определителя:
Можно начать и с определителя , в котором вместо свободных членов в -м столбце подставлены их выражения согласно (1); используя соответствующие свойства определителя, получим:
( ),
откуда и получаются формулы Крамера.
Замечание. Проверка того, что значения неизвестных, определяемые по формуле Крамера удовлетворяют системе (1), (т.е. образуют решение системы), производится одним из известных способов.
§2. Применение циркулянтов малых порядков в теории чисел.
Матрица вида:
- называется циклической матрицей или циркулянтом (третьего порядка), а ее определитель – циклическим определителем. Циклическим определителем некоторые авторы называют также циркулянтом.
Пусть дан циклический определитель (Циркулянт)
.
Прибавив первые две строки к третьей, получим:
.
Вынесем общий множитель из последней строки:
.
Так как
,
то
.
С другой стороны, по определению детерминанта имеем:
Следовательно, выполняется тождество
(1)
Имеет место следующее предложение.
Предложение 1. Уравнение
(2)
не имеет решений в натуральных числах
Доказательство: Если - вещественные положительные числа, не все равные между собой, то
(3)
Пусть - не все равные между собой положительные числа. Тогда существуют положительные числа и , не все равные между собой, такие, что . К этим числам применим тождество (1). Так как не все числа между собой равны, то последний сомножитель правой части тождества (1) есть число положительное и, следовательно,
,