Четверг, 30 Янв 2025, 09:10
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 18
Гостей: 18
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Новый метод решения кубического уравнения


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
14 Апр 2013, 01:01

Автор: Фильчев Э.Г.

Решение кубического уравнения в системе mn параметров

Решение кубического уравнения на основе современных методов не представляется тривиальным. В любом справочнике по математике предлагаются следующие методы

- разложение левой части на линейные множители ( если возможно )

- с помощью формулы Кардана

- применение специальных таблиц

(см. например, И.Н.Бронштейн. К.А.Семендяев. Справочник по математике …М. Наука 1980. стр.219).

В данной статье рассматривается метод решения любых кубических уравнений включая неприводимый случай формулы Кардана!

Задача "Задано кубическое уравнение вида ax3 + bx2+ cx + d = 0.

Используя формулы системы mn параметров предложить метод определения нулей исходного уравнения ". Пусть а = 1.

Решение

На сайте fgg-fil1.narod.ru/fmat16.doc приведена, полученная автором, формула mn преобразования степенной функции. Для кубического уравнения эта формула имеет вид

(2mn)2 + ( 3x + b )(2mn) + 3x2 + 2bx +с = 0 ( 1 )

где

x - любой из нулей ( корней) исходного уравнения

2mn - разность любой пары из трех нулей исходного уравнения

Решив уравнение (1) относительно х и подставив это значение в исходное уравнение, в результате, после простых, но громоздких преобразований, получим

(2mn)6 +2( 3c – b2 )(2mn)4+(3c – b2 )2(2mn)2 + [ 4( 3c – b2 )3 + ( 2b3 – 9bc + 27d )2]/27 = 0 ( 2 )

Это уравнение устанавливает связь коэффициентов исходного уравнения с параметром (2mn) и является кубическим относительно (2mn)2. На основании формул Виета и уравнения (2) можно сделать следующее утверждение

Утверждение1 "Для любого кубического уравнения вида x3 + bx2+ cx + d = 0 справедливы уравнения

3x2 + 2bx + c = - (2mn)1( 2mn)2

2(3c-b2) = - [(2mn)12+( 2mn)22+( 2mn)32 ]

[4(3c-b2)3+(2b3 - 9bc+27d)2]/27 = - (2mn)12( 2mn)22( 2mn)32

где (2mn)j - разность любой пары корней исходного уравнения.

x - один ( любой ) из корней исходного уравнения. "

1. Для любого кубического уравнения вида x3 + bx2+ cx + d = 0 определяем значение

D1 = -  = - (2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32

2. Определяем значение

D2 = - 2( 3c – b2 ) = - [(2mn)12 + ( 2mn)22 + ( 2mn)32]

Из этих уравнений следует, что

- если выражение - 2(3c - ) - целое число, то оно разложимо на сумму трех квадратов

- и если при этом выполняется равенство D1 = - (2mn)12( 2mn)22( 2mn)32 , то в результате получим решение для (2mn)1,( 2mn)2,( 2mn)3.

3. Определяем значение корней исходного уравнения

3x2 + 2bx + c = - (2mn)1( 2mn)2

3x2 + 2bx + c = (2mn)1( 2mn)2

3x2 + 2bx + c = - (2mn)1( 2mn)3

3x2 + 2bx + c = (2mn)1( 2mn)3

3x2 + 2bx + c = - (2mn)2( 2mn)3

3x2 + 2bx + c = (2mn)2( 2mn)3

Задача решена !

Пример 1 Решить уравнение с помощью формул системы mn параметров

x3 - 9x2+ 23x - 15 = 0

где a =1, b = - 9, c = 23, d = -15

Решение

1. Определяем значение D1 = = -


-→ D1 = - [4(69-81)3+( - 1458 + 1863 - 405)2]/27= - [4(69-81)3+0]/27= 256 = 162

Обратим внимание, что в этом примере (2b3-9bc+27d) = 0

2. Определяем значение D2 = - 2(3c - )

-→ D2 = - 2( 3∙23 - 81 ) = 24 = 4 + 16 + 4

Это единственное разложение числа 24 на три квадрата. Следовательно

имеем (2mn)1 = 2, (2mn)2 = 4, (2mn)3 = 2.

3. Определяем значение нулей ( корней ) исходного уравнения

3.1 3x2 + 2bx + c = - (2mn)1( 2mn)2

-→ 3x2 - 18x + 23 = - -> 3x2 - 18x + 31 = 0. Нет действительных решений.

3.2 3x2 + 2bx + c = (2mn)1( 2mn)2

-→ 3x2 - 18x + 23 = -> 3x2 - 18x + 15 = 0 -→ x2 - 6x + 5 = 0

-→ X1 = 3 + 2 = 5 , X2 = 3 - 2 = 1

Здесь X1 = 5 - одно из решений исходного уравнения.

Здесь X2 = 1 второе решение исходного уравнения.

3.3 3x2 + 2bx + c = - (2mn)1( 2mn)3

-→ 3x2 - 18x + 23 = - -> 3x2 - 18x + 27 = 0 -→ x2 - 6x + 9 = 0

-→ X2 = 3

Здесь X = 3 - последнее из решений исходного уравнения.

3.4 3x2 + 2bx + c = (2mn)1( 2mn)3

-→ 3x2 - 18x + 23 = 2∙2 -→ 3x2 - 18x + 19 = 0. Нет решений исходного уравнения.

Задача решена!


Пример 2 Решить уравнение с помощью формул системы mn параметров

x3 - 20x2+ 113x - 154 = 0

где a =1, b = - 20, c =113, d = -154

Решение

1. Определяем значение D1 = -

-→D1 = - [4(339-400)3+( - 16000 + 20340 - 4158)2]/27= - [- 907924+33124]/27=32400

2. Определяем значение D2 = - 2(3c - )

-→ D2 = - 2( - 400 ) = 122 = 32 + 72 + 82 = 42 + 52 + 92

Здесь имеет место два представления числа 122 в виде суммы трех квадратов.

Поэтому, проверяем на соответствие с числом D1 = 32400.

2.1 32 ∙ 72 ∙ 82 = 28224 ≠ 32400

2.2 42 ∙ 52 ∙ 92 = 32400 . Этот вариант подходит!

-→ (2mn)11 = 4, (2mn)12 = - 4,

(2mn)21 = 5, (2mn)22 = - 5,

(2mn)31 = 9, (2mn)32 = - 9.

3. Определяем значение нулей ( корней ) исходного уравнения

3.1 3x2 + 2bx + c = - (2mn)1( 2mn)2

-→ 3x2 - 40x + 113 = - 4∙5 -> 3x2 - 40x + 133 = 0.

-→ X1 = 7, X2 =


4. Таким образом, определен один из корней исходного кубического уравнения X1 = 7, и кроме того, известны значения (2mn)11 ÷ (2mn)32. Этих данных достаточно для определения двух остальных корней.

4.1 Пусть (2mn)11 = 4 = (X1 - X2) -→ X2 = X1 – 4 = 7 – 4 = 3. Нет решения(это не корень).

4.2 Пусть (2mn)12 = - 4 = (X1 - X2) -→ X2 = X1 + 4 = 7 + 4 = 11. Это второй корень.

4.3 Пусть (2mn)21 = 5 = (X2 - X3) -→ X3 = X2 - 5 = 7 - 5 = 2. Это третий корень.

Решением исходного уравнения будет X1 = 7, X2 = 2, X3 = 11.

Расчет закончен !

Пример 3 Решить уравнение с помощью формул системы mn параметров

x3 - 10x2 - 49x + 130 = 0

где a =1, b = - 10, c = - 49, d = 130

Решение

1. Определяем значение D1 = -

-→D1 = - [4( -147 - 100)3+( 2000 + 4410 - 3510)2]/27= - [- 60276892+8410000]/27= 1920996

2. Определяем значение D2 = - 2( 3c - )

-→ D2 = - 2( - 147 - 100 ) = 494 = 12 + 32 + 222 = 22 + 72 + 212 = 72 + 112 + 182

Из этих трех вариантов представления числа 494 в виде суммы трех квадратов подходит последний вариант , т.к. 72 ∙ 112 $IMAGE6$ 182 = 1920996

-→ (2mn)11 = 7, (2mn)12 = - 7,

(2mn)21 = 11, (2mn)22 = - 11,

(2mn)31 = 18, (2mn)32 = - 18.

3. Определяем значение нулей ( корней ) исходного уравнения

3.1 3x2 + 2bx + c = - (2mn)11( 2mn)21

-→ 3x2 - 20x - 49 = 7∙11 -> 3x2 - 20x - 126 = 0. Эти значения X не подходят!

3.2 3x2 + 2bx + c = (2mn)11( 2mn)22

-→ 3x2 - 20x - 49 =- 77 -→ 3x2 - 20x + 28 = 0.

-→ X1 = $IMAGE7$ , X2 = 2 – это один из корней исходного уравнения!

4. Таким образом, определен один из корней исходного кубического уравнения X1 = 2, и кроме того, известны значения (2mn)11 ÷ (2mn)32. Этих данных достаточно для определения двух остальных корней.

4.1 Пусть (2mn)11 = 7 = (X1 - X2) -→ X2 = X1 – 7 = 2 – 7 = - 5. Это второй корень!

4.2 Пусть (2mn)12 = - 7 = (X1 - X2) -→ X2 = X1 +7 = 2 + 7 = 9. Это не корень.

4.3 Пусть (2mn)21 = 11 = (X1 - X3) -→ X3 = X1 - 11= 2 - 11 = - 9. Это не корень.

4.4 Пусть (2mn)21 = -11 = (X1 - X3) -→ X3 = X1 + 11= 2 + 11 = 13. Это третий корень!

Решением исходного уравнения будет X1 = 2, X2 = - 5, X3 = 13.

Расчет закончен !

Пример 4 Решить уравнение с помощью формул системы mn параметров

x3 - 6.85x2 + 13.425x – 8.1 = 0

где a =1, b = - 6.85, c = 13.425, d = - 8.1

В этом уравнении имеют место нецелые значения коэффициентов. Это указывает на то, что и корни также могут иметь нецелые значения.

Решение

1. Определяем значение D1 = -

-→D1 = - [4( 40.275 – 46.9225)3+(- 642.83825 + 827.65125 – 218.7)2]/27

-→D1 = - [- 1174.9923236875+1148.328769]/27= 0.987539062500

2. Определяем значение D2 = - 2( 3c - )

-→ D2 = - 2(40.275 – 46.9225 ) = 13.2950

В этом случае имеют место дробные значения для D1 и D2 . Предлагаемый метод решения куб.уравнения оперирует только с целыми числами, поэтому необходимо умножить на 10k .

При этом значение степени k должно определяться

- для D2 числом знаков в мантиссе ( для данного примера k2 = 4 )

- для D1 = 3∙ (число знаков в мантиссе для D2 ). -→ k1 = 3∙ k2 ( для данного примера k1 = 12 ).

Для дальнейшего рассмотрения используем два числа

- D11 = 987539062500

- D21 = 132950.

3. Далее задача заключается в том, чтобы определить три значения таких целых чисел ( А,Б,Д), при которых выполняются равенства D21 = А2 + Б2 + Д2 и D11 = А2 ∙ Б2 ∙ Д2 .

Для нахождения значений чисел А,Б,Д можно использовать две методики

- найти все варианты представления числа D21 в виде суммы трех квадратов. При этом один

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 205 | Загрузок: 1 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
30 Янв 2025
09:10


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz