Четверг, 06 Фев 2025, 07:34
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 31
Гостей: 31
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Модели и методы принятия решений


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
14 Апр 2013, 03:06

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Курсовая работа

Модели и методы принятия решений

Выполнила: Токарева О.П.

Заочная форма обучения

Курс V

Специальность 210100

№ зачетной книжки 602654

Проверил: Цыганов Ю.К.

Москва

2008


Задание

на курсовую работу по дисциплине «Модели и методы принятия решений»

Вариант 4

Задача 1.

Решить графоаналитическим методом.

min j (X) = – 3x1 – 2x2

при 2x1 + x2 ³ 2

x1 + x2 £ 3

– x1 + x2 ³ 1

X ³ 0

Задача 2.

· Найти экстремумы методом множителей Лагранжа.

· Решение проиллюстрировать графически.

extr j (X) = x12 + x22

при x12 + x22 – 9x2 + 4,25 = 0

Задача 3.

· Решить на основе условий Куна-Таккера.

· Решение проиллюстрировать графически.

extr j (X) = x1x2

при 6x1 + 4x2 ³ 12

2x1 + 3x2 £ 24

– 3x1 + 4x2 £ 12

Задача 4.

· Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.

· Решить задачу средствами MS Excel.

· Решение проиллюстрировать графически.

max j (X) = 2x1 + 4x2 – x12 – 2x22

при x1 + 2x2 £ 8

2x1 – x2 £ 12

X ³ 0


Задача 1

Решить графоаналитическим методом.

min j (X) = – 3x1 – 2x2

при 2x1 + x2 ³ 2

x1 + x2 £ 3

– x1 + x2 ³ 1

X ³ 0

Решение:

Построим линии ограничений:

Примем: 2х1+х2=2               (a)

х1+х2=3              (b)

-х1+х2=1             (c)

экстремум функция минимизация алгоритм

Получаем три прямые a, b и c, которые пересекаются и образуют треугольник соответствующий области которая соответствует первым трем ограничениям, добавляя четвертое ограничение получаем четырехугольник ABCD – допустимая область значений, в которой надо искать минимум (на рисунке эта область не заштрихована).


Рис. 1

Примем целевую функцию равной нулю (красная линия d) тогда градиент имеет координаты (-3;-2). Для того, чтобы найти минимум целевой функции будем перемещать график линии d параллельно самой себе в направлении антиградиента до входа ее в область ограничений. Точка в которой область войдет в допустимую область и будет искомой точкой минимума целевой функции. Это точка В(0,33 ; 1,33). При этом целевая функция будет иметь значение:

Темно-синяя линия на рисунке (е).


Задача 2.

· Найти экстремумы методом множителей Лагранжа.

· Решение проиллюстрировать графически.

extr j (X) = x12 + x22

при x12 + x22 – 9x2 + 4,25 = 0

Решение:

Составим функцию Лагранжа

h(X)=x12 + x22 - 9x2 + 4,25=0

Составим систему уравнений из частных производных и приравняем их к нулю:

Решим данную систему уравнений:

Разложим на множители 1 уравнение системы:

$IMAGE6$

Предположим, что $IMAGE7$, тогда $IMAGE8$. Подставим во второе уравнение:

2x2 - 2x2 + 9 = 0

9 = 0 не верно, следовательно принимаем, что

$IMAGE9$, а $IMAGE10$

Подставляем $IMAGE11$ в третье уравнение:

$IMAGE12$

Решая это квадратное уравнение получаем, что

$IMAGE13$

Подставляем эти значения во второе уравнение:

1.Подставим первый корень $IMAGE14$, получаем

$IMAGE15$


2. Подставим второй корень $IMAGE16$, получаем

$IMAGE17$

$IMAGE18$

( X*,λ*)

N

X1* X2* λ* φ(X*) Примечание
1 0

$IMAGE19$

$IMAGE20$

$IMAGE21$

Min
2 0

$IMAGE22$

$IMAGE23$

$IMAGE24$

Max

$IMAGE25$- кривая a (окружность)

$IMAGE26$- кривая b (окружность)

Задача 3

· Решить на основе условий Куна-Таккера.

· Решение проиллюстрировать графически.

extr j (X) = x1x2

при 6x1 + 4x2 ³ 12

2x1 + 3x2 £ 24

– 3x1 + 4x2 £ 12

Решение:

Решим задачу на основе условий Куна-Таккера.

Составим функцию Лагранжа:

$IMAGE27$

Составим систему уравнений из частных производных и приравняем их к нулю:


$IMAGE28$

Решим данную систему уравнений:

1.Предположим, что $IMAGE29$, тогда из уравнения 5 получим:

$IMAGE30$

Предположим, что $IMAGE31$, $IMAGE32$, $IMAGE33$, тогда из уравнения 1 получим:

$IMAGE34$

Пусть $IMAGE35$, тогда из уравнения 2 получаем:


$IMAGE36$

Это решение не удовлетворяет условиям задачи: (Х≥0)

2.Предположим, что $IMAGE37$и $IMAGE38$, тогда из уравнения 1 получим:

$IMAGE39$

Предположим, что $IMAGE40$, $IMAGE41$, $IMAGE42$, выразим из второго уравнения $IMAGE43$:

$IMAGE44$

Подставим в 3 уравнение:

$IMAGE45$

Получаем: $IMAGE46$, $IMAGE47$, $IMAGE48$

В этой точке функция $IMAGE49$ равна минимальному значению

3. Предположим, что $IMAGE50$, $IMAGE51$ и $IMAGE52$, тогда из второго уравнения получим:

$IMAGE53$

Предположим, что $IMAGE40$, $IMAGE55$ и $IMAGE56$, тогда из второго уравнения следует:

$IMAGE57$

Подставим в четвертое уравнение:

$IMAGE58$

Получаем: $IMAGE59$, $IMAGE60$, $IMAGE61$

В этой точке функция $IMAGE49$имеет максимальное значение:


$IMAGE63$

X*

N

X1* X2* φ(X*) Примечание
1 1 1,5 1,5 Min
2 6 4 24 Max

Прямая а соответствует графику функции 6х1+4х2=12

Прямая b – графику функции 2х1+3х2=24

Прямая с – графику функции -3х1+4х2=12

Прямая d – графику функции $IMAGE64$

Прямая е – графику функции $IMAGE65$

Задача 4

· Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.

· Решить задачу средствами MS Excel.

· Решение проиллюстрировать графически.

max j (X) = 2x1 + 4x2 – x12 – 2x22

при x1 + 2x2 £ 8

2x1 – x2 £ 12

X ³ 0

Решение:

1. Найдем выражение вектор функции системы:

Составим функцию Лагранжа:

$IMAGE66$

Вектор функция системы:

$IMAGE67$

2. Составим матрицу Якоби


$IMAGE68$=

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 191 | Загрузок: 4 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
06 Фев 2025
07:34


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz