СОДЕРЖАНИЕ
Введение
1. Многочлены Лежандра
2. Многочлены Чебышева
3. Преобразование Лапласа
4. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке
4.1 Постановка задачи
4.2.Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра
4.3. Обращение преобразования Лапласа с помощью смещенных многочленов Чебышева первого рода.
Заключение
преобразование смещенный многочлен исчисление
ВВЕДЕНИЕ
Математический анализ – раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.
Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571–1630), Ф.Кавальери (1598–1647), П.Ферма (1601–1665), Дж.Валлис (1616–1703) и И.Барроу (1630–1677).
Операционное исчисление – раздел математики, занимающийся главным образом алгебраическими операциями, производимыми над символами операции (или преобразования).
Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых «точки» в действительности являются функциями. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических методов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек, т.е. линейным пространствам, группам, кольцам, полям и т.д.
Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наиболее полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями.
В середине XIX века появился ряд сочинений, посвящённых так называемому символическому исчислению и применению его к решению некоторых типов линейных дифференциальных уравнений. Сущность символического исчисления состоит в том, что вводятся в рассмотрение и надлежащим образом интерпретируются функции оператора дифференцирования.
.
Среди сочинений по символическому исчислению следует отметить вышедшую в 1862 году в Киеве обстоятельную монографию русского математика М. Е. Ващенко-Захарченко «Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений». В ней поставлены и разрешены основные задачи того метода, который в дальнейшем получил название операционного.
В 1892 году появились работы английского учёного О. Хевисайда, посвящённые применению метода символического исчисления к решению задач по теории распространения электрических колебаний в проводах.

В отличие от своих предшественников, Хевисайд определил обратный оператор однозначно, полагая и считая f(u) = 0 для u < 0. Труды Хевисайда положили начало систематическому применению символического, или операционного, исчисления к решению физических и технических задач.

Однако широко развитое в трудах Хевисайда операционное исчисление не получило математического обоснования, и многие его результаты оставались недоказанными. Строгое обоснование было дано значительно позже, когда была установлена связь между функциональным преобразованием Лапласа и оператором дифференцирования

если существует производная
, для которой
$IMAGE6$
существует и f(0) = 0, то
$IMAGE7$.
Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики. Использование интегральных преобразований позволяет свести дифференциальное, интегральное или интегро-дифференциальное уравнение к алгебраическому, а также, в случае дифференциального уравнения в частных производных, уменьшить размерность.
Интегральные преобразования задаются формулой
$IMAGE8$, (1)
где функции $IMAGE9$ называются оригиналом и изображением соответственно, и являются элементами некоторого функционального пространства $IMAGE10$, при этом функция $IMAGE11$ называется ядром интегрального преобразования.
Большинство интегральных преобразований являются обратимыми, то есть по известному изображению можно восстановить оригинал, зачастую также интегральным преобразованием:
$IMAGE12$ (2)
Хотя свойства интегральных преобразований достаточно обширны, у них довольно много общего.
преобразование смещенный многочлен исчисление
1. Многочлены Лежандра
Многочлены Лежандра — многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке $IMAGE13$по мере Лебега. Многочлены Лежандра могут быть получены из многочленов $IMAGE14$ортогонализацией Грама ― Шмидта.
Названы по имени французского математика Адриен Мари Лежандра.
Многочлены Лежандра определяются по формуле (называемой формулой Родрига)
$IMAGE15$ (3)
часто записываемой в виде:
$IMAGE16$ (4)
Многочлены Лежандра также определяются по следующим формулам:
$IMAGE17$
$IMAGE18$
$IMAGE19$, если $IMAGE20$;
$IMAGE21$, если $IMAGE22$.
Они также могут быть вычислены по рекуррентной формуле:
$IMAGE23$
Первые многочлены Лежандра равны:
$IMAGE24$
$IMAGE25$
$IMAGE26$
$IMAGE27$
$IMAGE28$
$IMAGE29$
$IMAGE30$
$IMAGE31$
$IMAGE32$
$IMAGE33$
$IMAGE34$
2. Многочлены Чебышева
Многочлены Чебышева — две последовательности многочленов Tn(x) и Un(x), $IMAGE35$названные в честь Пафнутия Львовича Чебышева.
Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода используются в качестве узлов в интерполяции алгебраическими многочленами.
Многочлен Чебышева первого рода Tn(x) характеризуется как многочлен степени n со старшим коэффициентом 2n - 1, который меньше всего отклоняется от нуля на интервале [ − 1,1]. Впервые рассмотрены самим Чебышёвым.
Многочлены Чебышева первого рода Tn(x) могут быть определены с помощью рекуррентного соотношения:
$IMAGE36$
$IMAGE37$
$IMAGE38$
Многочлены Чебышева первого рода $IMAGE39$могут быть также определены с помощью равенства:
$IMAGE40$
или, что почти эквивалентно,
$IMAGE41$
Несколько первых многочленов Чебышева первого рода
$IMAGE42$
$IMAGE43$
$IMAGE44$
$IMAGE45$
$IMAGE46$
$IMAGE47$
$IMAGE48$
$IMAGE49$
$IMAGE50$
$IMAGE51$
Многочлены Чебышева обладают следующими свойствами:
Ортогональность по отношению к соответствующим скалярному произведению (с весом $IMAGE52$для многочленов первого рода и $IMAGE53$для многочленов второго рода).
Среди всех многочленов, значения которых на отрезке [ − 1,1] не превосходят по модулю 1, многочлен Чебышева имеет: наибольший старший коэффициент наибольшее значение в любой точке за пределами [ − 1,1] если $IMAGE54$, то $IMAGE55$, где tk — коэффициент многочлена Чебышева первого рода, ak — коэффициент любого из рассматриваемых полиномов.
Нули полиномов Чебышева являются оптимальными узлами в различных интерполяционных схемах. Например, в методе дискретных особенностей, который часто используется при исследовании интегральных уравнений в электродинамике и аэродинамике.
3.
4. Преобразование Лапласа
Преобразование Лапласа — интегральное преобразование, связывающее функцию $IMAGE56$комплексного переменного (изображение) с функцией $IMAGE57$действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.
Интеграл Лапласа имеет вид:
$IMAGE58$ (5)
где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(p) комплексного переменного p=s+it. Многие интегралы вида (5) были рассмотрены П. Лапласом.
В узком смысле под преобразованием Лапласа подразумевают одностороннее преобразование Лапласа
$IMAGE59$, (6)
называемое так в отличие от двустороннего преобразования Лапласа
$IMAGE60$ (7)
Преобразование Лапласа – частный вид интегральных преобразований;. преобразования вида (6) или (7) тесно связаны с Фурье преобразованием. Двустороннее преобразование Лапласа (7) можно рассматривать как преобразование Фурье функции $IMAGE61$, одностороннее преобразование Лапласа (6) - как преобразование Фурье функции j(t) равной $IMAGE61$ при 0 < t < ∞ и равной нулю при -∞ < t < 0.
Подынтегральная комплексная локально суммируемая функция f(t) называется функцией-оригиналом, или просто оригиналом; в приложениях часто удобно трактовать переменное t как время. Функция F(p)=L[f], (р) называется также преобразованием Лапласа оригинала f(t) или изображением по Лапласу. Интеграл (6) понимается, вообще говоря, как условно сходящийся на бесконечности.
Априори возможны три случая:
1) существует действительное число $IMAGE63$ такое, что интеграл (6) сходится при $IMAGE64$, а при $IMAGE65$ – расходится; это число σс называется абсциссой (условной) сходимости;
2) интеграл (6) сходится при всех р, в этом случае полагают $IMAGE66$;
3) интеграл (6) расходится при всех р, в этом случае полагают $IMAGE67$
Если $IMAGE68$, то интеграл (6) представляет однозначную аналитическую функцию F(p) в полуплоскости сходимости $IMAGE69$. Обычно ограничиваются рассмотрением абсолютно сходящихся интегралов (6). Точная нижняя грань тех s, для которых существует интеграл $IMAGE70$, называется абсциссой абсолютной сходимости $IMAGE71$ $IMAGE72$
Если а – есть нижняя грань тех s, для которых $IMAGE73$ число а иногда называют показателем роста оригинала f(t).
При некоторых дополнительных условиях оригинал f(t) однозначно восстанавливается по своему F(p). Например, если f(t) имеет ограниченную вариацию в окрестности точки t0 или если f(t) кусочногладкая, то имеет место формула обращения преобразования Лапласа:
$IMAGE74$ (8)
Формулы (6) и (8) позволяют получить ряд соотношений между операциями, производимыми над оригиналами и изображениями, а также таблицу изображений для часто встречающихся оригиналов. Все это составляет элементарную часть операционного исчисления.
В математической физике важные применения находит многомерное преобразование Лапласа:
$IMAGE75$ (9)
где t = (t1, ……, tn)
-точка re-мерного евклидова пространства
Rn, p = (p1, ……, pn) = σ + iτ = (σ1, ……, σn) + (τ1, ……, τn)
-точка комплексного пространства
Cn, n≥1, (p,t) = (σ,t)+i(τ,t) = p1t1 + … +pntn
-скалярное произведение, dt = dt1