Пятница, 31 Янв 2025, 16:42
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 9
Гостей: 9
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Методы численного моделирования МДП-структур


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
11 Апр 2013, 20:11

Министерство общего и профессионального

Образования Российской Федерации


Воронежский государственный университет

Физический факультет

  • Кафедра физики

  • полупроводников и

  • микроэлектроники


Курсовая работа


Методы численного проектирования МДП приборов


  • Руководитель

  • к.т.н Головин С.В.______


  • Исполнитель

  • студент 3 курса д/о

  • Савченко А.А. _________


Воронеж, 1999

Реферат

страниц 23,рисунков 4

В данной работе представлен обзор литературы по теме “ Методы численного проектирования МДП приборов”.Обзор содержит обобщающее введение в проблему получения математических моделей МДП-структур,методы и алгоритмы решения задачи численного моделирования.


Содержание

I.Введение……………………………………………………………………3

II.Математическая модель…………………………………………….…….4

    1. Основные уравнения……………………………………………….4

    2. Модели подвижности и рекомбинации.Краевые и начальные

условия………………………………………………………………7

III.Численное решение основной системы уравнений …………………...8

3.1 Алгебраизация ФСУ………………………………………………..9

3.1.1 Дискретизация уравнения Пуассона…………………………..11

3.1.2 Дискретизация уравнения непрерывности……………………13

3.2 Решение нелинейной алгебраической задачи……………………13

  1. 3.2.1 Метод установления……………..……………………………13

3.2.2 Другой вариант метода установления…..……………………14

3.2.3 Методы линеаризации для решения нелинейной системы…15

        1. Итерационные методы решения линеаризированных

уравнений…………………………………………………...17

IV.Заключение………………………………………………………………...22

Литература…………………………………………………………………….23


I.Введение.

С середины 60-х гг. начало складываться новое направление в моделировании п/п приборов, предполагающее замену реального объекта его математической моделью, которая впоследствии решается на ЭВМ методами вычислительной математики. Моделью фрагмента твёрдотельной микроэлектронной структуры является система уравнений физики полупроводников, описывающая процессы переноса носителей заряда и распространения потенциала электрического поля в приборе. Такой подход позволяет учесть и исследовать различные нелинейные физические эффекты (Эрли, Кирка и др.) и их влияние на внешние электрические характеристики приборов.

Развитие вычислительной техники и появление эффективных численных методов решения уравнений математической физики сделали возможным появление двух и трёхмерных моделей. Необходимость таких моделей обусловлена рядом причин .

1.При анализе приборов с микронными размерами рабочих областей необходим многомерный подход.

2.Во многих современных приборах движение носителей тока имеет двумерный характер.

3.Многомерный анализ позволяет часто в традиционных приборах увидеть новые эффекты.

4.Невозможность внесения исправлений в готовый прибор и неоправданные затраты на совершенствование п/п приборов с помощью многочисленных тестовых итераций делают эффективной и экономически оправданной методологию численного моделирования.

Таким образом, располагая пакетом программ, реализующими численные модели, можно проектировать приборы непосредственно на ЭВМ, значительно сокращая количество длительных и дорогостоящих экспериментов.

В данной работе описываются двумерные численные модели, основанные на решении уравнений переноса носителей с помощью аппарата конечных разностей.


II.Математическая модель.

1.1.Основные уравнения .

Моделируемая МДП-структура, заполняющая некоторый объём, рассматривается как обьеденение областей, каждая из которых соответствует определённому материалу (рис.1) .Математические модели состояния металлических контактов считаются известными. Следовательно, моделированию подлежат тоько области полупроводника и диэлектрика.

Можно записать систему уравнений с достаточной точностью описывающую процессы, происходящие в полупроводнике [1].

Потенциал электрического поля описывается уравнением Пуассона:

= -q(p-n+Nd-Na)/0 , (1.1)

У

n

t

равнение непрерывности для носителей заряда:

divJn-qRn-q =0 , (1.2)

p

t

divJp+qRp+q =0 , (1.3)

Jn=qDnn-nVn  , (1.4)

Jp= pVp –qDpp , (1.5)

Где n и p -концентрации электронов и дырок; - электрический потенциал; Dn и Dp–коэффициенты диффузии для электронов и дырок; Vn и Vp –скорости дрейфа электронов и дырок; Jn и Jp плотности потоков электронов и дырок; R- превышение скорости рекомбинации над скоростью генерации , Na и Nd -концентрации донорной и акцепторной примеси; q -заряд электрона;0-диэлектрическая проницаемость.


Исток Затвор Сток




Ly

y



n+ n+


p

A

B









Lx x

Подложка

Рис.1.Схематическое изображение МДП-структуры.


Необходимо отметить, что эффекты сильного легирования не оказывают существенного влияния на процессы в МДП-структурах [1], поэтому в уравнениях (1.4) –(1.5) они не учтены.

Уравнение Пуассона описывает области полупроводника и диэлектрика.Уравнения непрерывности действительны только для полупроводникового материала. На границе раздела диэлекрик-полупроводник ( на линии AB рис.1) выполняются условия [2]:

ппдд

гдееденичный вектор, ортогональный границе раздела,поверхностная плотность заряда ,которая считается известной (часто полагают =0).

Для упрощения вида уравнений пользуются нормировкой всех величин входящих в систему, для этого все величины домножаются на соответствующий коэффициент. Масштабные коэффициенты приведены в литературе[2][3].

Уравнения (1.1)-(1.5) можно записать в интегральной форме:


S

(Jn·)dS= R0dV, (1.51)

V

S

V

(Jp·dS= R0dV , (1.52)

S

V


(·dS= (n-p-N-N)dV, (1.53)

N=Nd-Na,

N=/h,

N”концентрация” поверхностного заряда,приведённая к обьёму ячейки Vi

( h-сторона ячейки,перпендикулярная к границе раздела).

Система (1.51)-(1.53) содержит три интегральных тождества каждое из которых соответствует уравнению Пуассон, либо уравнению непрерывности.

Причём теперь уравнение Пуассона описывает как точки принадлежащие диэлектрической и полупроводниковой средам, так и точки, лежащие на границе раздела этих сред.

1.2. Модели подвижности и рекомбинации. Краевые и начальные условия.

Для полной постановки задачи помимо основных уравнений (1.1)-(1.5)

(

-1/2

(1.51)-(1.53)) необходимо задать модели подвижностей n и p, скорости рекомбинации R(p,n), а так же сформулировать краевые и начальные условия. В настоящее время применяются различные эмпирические формулы для n и p. Наиболее широко применяется модель Ямагучи [1][2], согласно которой n и p определяются по формулам:

n= 65+1265 ( 1+ ( Nt /8.5 1016)0.72)-1 1+|E/8000| 2 , (1.60)







































***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 171 | Загрузок: 7 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Пятница
31 Янв 2025
16:42


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz