В.В. Сидоренков, МГТУ им. Н.Э. Баумана
На основе первичных фундаментальных соотношений электромагнетизма - закона Кулона взаимодействия неподвижных электрических точечных зарядов и закона сохранения электрического заряда цепочкой последовательных физико-математических рассуждений построена система дифференциальных уравнений Максвелла классической электродинамики.
В курсе общей физики при изложении природы электричества [1] концепция электромагнитного поля является центральной, поскольку посредством такого поля реализуется один из видов фундаментального взаимодействия разнесенных в пространстве материальных тел. Физические свойства указанного поля математически представляются системой функционально связанных между собой уравнений в частных производных первого порядка, первоначальная версия которых была получена во второй половине XIX века Дж.К. Максвеллом [2] обобщением эмпирических фактов. В структуре этих уравнений, описывающих поведение электромагнитного поля в неподвижной среде, заложена основная аксиома классической электродинамики - неразрывное единство переменных во времени электрического и магнитного полей. В современной форме такая система дифференциальных уравнений имеет следующий вид:
(a)
, (b)
,
(c)
, (d)
. (1)
Здесь векторные поля: электрической
и магнитной $IMAGE6$ напряженности, соответственно, электрической $IMAGE7$ и магнитной $IMAGE8$ индукции, а также плотности электрического тока $IMAGE9$; $IMAGE10$ и $IMAGE11$ - абсолютные электрическая и магнитная проницаемости, $IMAGE12$ - удельная электрическая проводимость материальной среды, $IMAGE13$- объемная плотность стороннего электрического заряда.
Покажем, как на основе первичных фундаментальных соотношений электромагнетизма - закона Кулона взаимодействия электрических точечных неподвижных зарядов
$IMAGE14$ (2)
и закона сохранения электрического заряда [1]
$IMAGE15$ (3)
цепочкой последовательных физико-математических рассуждений можно построить систему электродинамических уравнений Максвелла (1). Представляется, что логика таких рассуждений позволит обучаемым яснее и глубже понять сущность корпускулярно-полевого дуализма природы электричества.
Фундаментальность закона Кулона (2) состоит в том, что его посредством описывается силовое взаимодействие разнесенных в пространстве неподвижных электрически заряженных материальных тел, где для изучения следствий такого взаимодействия вводят понятие электрического поля в виде напряженности – силы Кулона на единицу заряда: $IMAGE16$, где $IMAGE17$ - пробный точечный заряд. Топология структуры электрического поля точечного заряда $IMAGE18$ такова, что интеграл от этой функции по сфере любого радиуса константен: $IMAGE19$, а при использовании понятия телесного угла несложно убедиться: поток вектора поля электрической индукции (смещения) $IMAGE7$ через произвольную замкнутую поверхность S тождественно равен суммарному стороннему электрическому заряду $IMAGE21$ в объеме $IMAGE22$ внутри этой поверхности, причем на самой указанной поверхности посредством интегрирования поля электрической индукции $IMAGE23$ определяется индуцируемый поляризационный электрический заряд $IMAGE24$, так что $IMAGE25$:
$IMAGE26$.
Такие рассуждения называют электростатической теоремой Гаусса. Она описывает результат электрической поляризации. Правда, обычно в физические подробности процесса поляризации не вникают, а потому в данной теореме о заряде $IMAGE24$ в теореме просто не говорят. Здесь надо иметь в виду, что равенство нулю суммарных величин указанных зарядов, соответственно, электрического потока: $IMAGE28$, вовсе не означает отсутствие электрического поля в этой области пространства, поскольку электрические заряды бывают положительными и отрицательными, и указанное поле может создаваться электронейтральными источниками, например, электрическими диполями. Это свойство электростатического поля качественно отличает его от ньютоновского поля тяготения, где источники такого поля – гравитирующие массы имеют один знак. В системе электродинамических дифференциальных уравнений (1) теорема Гаусса представлена (см. теорему Гаусса-Остроградского) соотношением (1b), описывающим результат электрической поляризации среды, где в случае электронейтральности ( $IMAGE29$) среды оно имеет вид $IMAGE30$.
Воспользуемся теперь другим первичным фундаментальным законом электромагнетизма - законом сохранения электрического заряда (3), структурно представляющим собой уравнение непрерывности. Закон гласит: изменение заряда в данной точке пространства $IMAGE31$ единственно возможно лишь за счет транспорта зарядов извне $IMAGE32$, ведь по определению (теорема Гаусса-Остроградского) дивергенция - это объемная плотность потока векторного поля в данной точке. Тогда подстановка в (3) уравнения (1b) дает формулу $IMAGE33$. И с учетом того, что для любого векторного поля $IMAGE34$, получаем еще одно уравнение обсуждаемой здесь системы: $IMAGE35$ (1с). Это уравнение обычно называют законом полного тока: электрические токи проводимости и смещения порождают вихревое магнитное поле, силовые линии векторов напряженности $IMAGE36$ которого охватывают линии этих токов.
Итак, в области существования движущихся зарядов и переменных во времени электрических полей $IMAGE37$, то есть в уравнении (1с) функция $IMAGE36$ является чисто вихревой, а потому для математического уточнения данной топологии магнитного поля введем соотношение
. Тем самым получим следующее уравнение системы (1) – уравнение (1d). Поскольку дивергенция - объемная плотность потока векторного поля в данной точке, то уравнение
способно описать не только вихревые свойства функции $IMAGE36$, но и ее потенциальную версию, случай когда $IMAGE42$. В этой ситуации соотношение (1d) математически представляет физический результат магнитной поляризации материальной среды. Комментируя физическое содержание такого уравнения, обычно говорят, что оно наглядно иллюстрирует отсутствие в Природе сторонних магнитных зарядов, подобных зарядам электрическим, при этом, входя в противоречие, безосновательно называют
теоремой Гаусса магнитного поля, хотя в рамках логики уравнений Максвелла базы для этой теоремы - магнитного закона Кулона принципиально не существует.
Наконец, частным дифференцированием по времени $IMAGE44$ уравнения (1d) получаем на основе $IMAGE45$ адекватное с учетом знака закону электромагнитной индукции Фарадея уравнение (1а), последнее в системе (1). Итак, изменяющееся во времени поле магнитной индукции порождает в данной точке пространства вихревое электрическое поле. Ввиду того, что в уравнении (1a) $IMAGE46$, то функция поля $IMAGE47$ является вихревой, и эту топологию способно уточнить, согласно вышесказанному о дивергенции, уже полученное нами ранее уравнение (1b) в виде $IMAGE30$. Как видим, дивергентные уравнения (1b) и (1d) как математически, так и физически весьма содержательны.
И это только то, что лежит на поверхности. А если взглянуть глубже, то уравнения $IMAGE49$ и $IMAGE50$ содержат сведения о полях электрического $IMAGE51$ и магнитного $IMAGE52$ векторных потенциалов, связанных с электрической - $IMAGE53$ и магнитной - $IMAGE54$ поляризациями. На сегодня установлено [3, 4], что векторные потенциалы – полноправные физически значимые поля, и учет этого обстоятельства позволяет углубить и кардинально модернизировать концептуальные основы классической электродинамики, где обсуждаемая здесь система уравнений Максвелла будет лишь рядовым частным следствием.
Однако вернемся к уравнениям системы (1). Убедимся, что данная система замкнута и может быть представлена в виде математической задачи Коши - решение уравнений с заданными начальными условиями. Для этого, прежде всего, надо показать, что уравнение (1d) является следствием уравнения (1а), а уравнение (1b) есть следствие уравнения (1c). Вообще говоря, все это уже установлено в наших рассуждениях при построении уравнений системы (1), и все же проделаем обратное в явном виде. Итак, возьмем дивергенцию от (1а):
$IMAGE55$ $IMAGE56$ $IMAGE57$ $IMAGE56$ $IMAGE59$.
Поскольку уравнение (1d) $IMAGE60$ удовлетворяется при любых $IMAGE61$, то оно верно и для $IMAGE62$. Таким образом, уравнение (1d) действительно является начальным условием для уравнения (1а). Аналогичная процедура с уравнением (1c) и сравнение этого результата с уравнением непрерывности (3) дает цепочку:
$IMAGE63$ $IMAGE56$ $IMAGE65$ $IMAGE56$ $IMAGE67$.
А так как уравнение (1b) $IMAGE68$ справедливо при любых $IMAGE61$, то оно верно и для $IMAGE62$. Следовательно, уравнение (1b) - это начальное условие для уравнения (1c).
В итоге с учетом уравнения непрерывности (3) система (1) действительно замкнута – 16 скалярных уравнений: (1a), (1c), (3) - 7 и материальные соотношения - 9 для нахождения 16 скалярных функций: компонент векторов
, $IMAGE6$, $IMAGE23$, $IMAGE74$, $IMAGE75$ и плотности заряда $IMAGE76$.
Важнейшим фундаментальным следствием уравнений Максвелла является тот факт, что $IMAGE77$ и $IMAGE78$ компоненты электромагнитного поля распространяются в пространстве в виде волн. Например, из (1а) и (1c) сравнительно просто получить волновое уравнение для поля электрической напряженности $IMAGE77$:
$IMAGE80$. (4)
Аналогично получается и уравнение волн поля магнитной напряженности $IMAGE78$, структурно полностью тождественное уравнению (4). Видно, что скорость распространения этих волн определяется только лишь электрическими и магнитными параметрами пространства материальной среды: $IMAGE82$, $IMAGE83$ и $IMAGE84$, в частности, в отсутствие поглощения ( $IMAGE85$) скорость волн $IMAGE86$.
С целью ответа на вопрос, что переносят эти волны, воспользуемся уравнениями Максвелла (1), являющиеся, в сущности, первичными уравнениями электромагнитной волны, откуда на основе уравнений (1а) и (1с) получаем закон сохранения энергии в форме, так называемой теоремы Пойнтинга:
$IMAGE87$. (5)
Видно, что поступающий извне в данную точку среды поток электромагнитной энергии, определяемый вектором Пойнтинга $IMAGE88$, идет на компенсацию джоулевых (тепловых) потерь в процессе электропроводности и изменение электрической и магнитной энергий, либо наоборот - эти физические процессы вызывают излучение наружу потока электромагнитной энергии. Например, уравнение энергетического баланса (5) показывает, что излучение вовне потока энергии $IMAGE89$ возникает при джоулевых потерях $IMAGE90$ за счет работы источника ЭДС, в котором $IMAGE77$ и $IMAGE92$ - антипараллельны. Соответственно, при $IMAGE93$ производные от слагаемых других энергий меньше нуля.
Существенно, что вектор плотности потока электромагнитной энергии $IMAGE88$, отличен от нуля только там, где одновременно присутствуют электрическая и магнитная компоненты поля, векторы $IMAGE77$ и $IMAGE78$ которых неколлинеарны. Соответственно, как видно из уравнений (1а) и (1с), переносящая энергию электромагнитная волна принципиально состоит из двух векторных взаимно ортогональных $IMAGE77$ и $IMAGE78$ компонент. При этом несложно убедиться [1], что уравнения Максвелла (1) описывают электромагнитную волну, колебания $IMAGE77$ и $IMAGE78$ компонент которой синфазны между собой. Но такие колебания этих двух компонент в принципе не отвечают механизму переноса энергии посредством волн произвольной физической природы, когда в данной точке пространства происходит взаимное преобразование во времени потенциальной (в нашем случае электрической) энергии в кинетическую (магнитную) энергию, и наоборот.
Упрощенно, ради наглядности этот процесс можно пояснить на примере колебаний физического маятника, когда такой вид движения реализуется при сдвиге фазы колебаний смещения и скорости маятника на $IMAGE101$, то есть благодаря обмену кинетической и потенциальной энергиями, где полная энергия незатухающих колебаний неизменна во времени. Следовательно, и в случае волны перенос энергии возможен только при сдвиге фазы колебаний между ее компонентами на $IMAGE101$, причем в среде без потерь поток энергии не зависит от времени и точек пространства. Однако, согласно уравнениям Максвелла, электромагнитных волн с такими характеристиками в Природе не существуют.
Правда, традиционная логика обсуждения переноса электромагнитной энергии такова, что проблемы здесь как бы и нет - всем все понятно. Действительно, из решения уравнений (1) для волновых амплитуд $IMAGE103$ формально, но абсолютно строго следует $IMAGE104$ - закон сохранения энергии. В итоге однозначно доказано, что электрическая энергия в точности равна энергии магнитной, переносимых волнами соответствующих компонент электромагнитного поля. Именно так этот вопрос излагается учащимся, причем правомерность такой методики аргументируется тем, что перенос энергии электромагнитными волнами реален, и это физическое явление широко и всесторонне используется во многих областях жизни современного общества. Однако это не ответ на вопрос: как же все-таки эти энергии переносятся?
В качестве конструктивного замечания отметим, что хотя $IMAGE77$ и $IMAGE78$ компоненты электромагнитных волн распространяются только совместно и их энергии равны, но при этом связи этих энергий между собой нет (синфазность колебаний). Более того, в случае электро- и магнитостатики эти энергии независимы в принципе. Следовательно, необходимо приходим к выводу об объективности раздельного существования электрической и магнитной энергий, при отсутствии каких-либо физических оснований считать, что электромагнитная волна распространяется так же, как и все другие волны, посредством взаимной перекачки энергии одного вида в другой. Но тогда становится совершенно неясным, казалось бы, очевидное для каждого понятие электромагнитной энергии, а также каков реальный механизм волнового переноса этого вида энергии?
Таким образ