Четверг, 14 Авг 2025, 03:34
Uchi.ucoz.ru
Меню сайта
Форма входа
Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51667


Онлайн всего: 5
Гостей: 5
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Матрицы графов


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
09 Апр 2013, 10:40

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информатики

РЕФЕРАТ

На тему:

«Матрицы графов»

МИНСК, 2008


В теоретико-множественной и геометрической форм определения (задания) графов, часто используется матричная форма их представления. Существуют различные виды матриц графов, однако все они, как правило, полностью передают основные свойства графов. Матричная форма задания графов обладает достаточной наглядностью при любой степени сложности графа и, что самое важное, позволяет автоматизировать процесс обработки информации, представленной в терминах теории графов, – любая матрица графа может быть введена в ЭВМ.

При задании графов в матричной форме могут учитываться либо отношения смежностей (вершин или ребер (дуг)), либо отображения инцидентности (вершин и ребер (дуг)). В связи с этим матрицы графов делятся на два основных класса: матрицы смежностей и матрицы инциденций.

Определение.1. Матрицей смежности вершин неориентированного графа G называется квадратная матрица A(G)=[aij] порядка p=p(G) (p – количество вершин графа), элементы aij которой равны числу ребер, соединяющих вершины xi и xj.


x1 x2 x3 x4 x5 x6 x7 x8
x1 2 0 0 0 1 0 1 0
x2 0 0 1 0 0 1 1 0
x3 0 1 0 1 0 1 0 0
A(G) = x4 0 0 1 0 1 0 0 0
x5 1 0 0 1 0 0 0 1
x6 0 1 1 0 0 0 0 0
x7 1 1 0 0 0 0 0 0
x8 0 0 0 0 1 0 0 0

На рис. 1 приведен неориентированный граф G(X, E) и справа – соответствующая ему матрица смежностей вершин A(G).

Из определения 1 непосредственно вытекают основные свойства матриц этого вида.

1. Матрица смежностей вершин неориентированного графа A(G) является квадратной и симметричной относительно главной диагонали.

2. Элементами матрицы A(G) являются целые положительные числа и число ноль.

3. Сумма элементов матрицы A(G) по i-й строке (или по i-му столбцу) равна степени соответствующей вершины d(xi).

Из определения матрицы смежностей вершин неориентированного графа и ее основных свойств следуют некоторые особенности соответствия между графом G(X, E) и его матрицей A(G). На рис. 1 указана некоторая нумерация вершин графа; расположенная рядом матрица соответствует именно этой нумерации. Если же в графе G(X, E), приведенном на этом рисунке, использовать другую нумерацию вершин (например, сдвинув ее относительно вершин по часовой стрелке), то это приведет к тому, что в матрице A(G) произойдет перестановка отдельных строк и столбцов. Поэтому говорят, что каждый неориентированный граф имеет единственную с точностью до перестановки строк и столбцов матрицу смежностей вершин. И наоборот, каждая квадратная симметричная относительно главной диагонали матрица, элементами которой являются целые положительные числа и число ноль, определяет единственный с точностью до изоморфизма неориентированный граф, матрицей смежностей вершин которого является данная матрица.

Рекомендуется самостоятельно построить матрицу смежностей вершин графа G(X, E), показанного на рис. 1, с использованием другой нумерации вершин и сравнить полученную при этом матрицу с матрицей смежностей вершин приведенного графа.

Определение 2. Матрицей смежности вершин ориентированного графа G называется квадратная матрица A(G)=[aij] порядка n (n – число вершин графа), элементы которой aij равны числу дуг, исходящих из вершины xi и заходящих в вершину xj.


x1 x2 x3 x4 x5 x6 x7 x8
x1 0 0 0 0 0 0 0 0
x2 0 0 0 0 0 1 0 0
x3 0 1 0 0 1 0 1 0
A(G) = x4 1 0 0 0 0 0 0 0
x5 0 0 0 0 1 1 0 0
x6 0 0 0 0 0 0 0 1
x7 0 0 0 0 0 1 0 0
x8 1 0 0 0 1 0 0 0

На рис. 2 показан ориентированный граф G(X, E) и справа – матрица смежностей его вершин. Из определения следует, что сумма элементов i-й строки матрицы A(G) орграфа равна полустепени исхода d+(xi), а по i-му столбцу – полустепени захода d-(xi). По-прежнему элементы этой матрицы – целые положительные числа и число ноль. Матрица смежностей вершин орграфа может оказаться симметричной относительно главной диагонали лишь в редких частных случаях.

Как и в случае неориентированных графов, каждый орграф имеет единственную с точностью до перестановки строк и столбцов матрицу смежностей вершин. И наоборот, каждая квадратная матрица, элементы которой – целые положительные числа и число ноль, определяет единственный с точностью до изоморфизма ориентированный граф.

Определение 3. Матрицей инцидентности неориентированного графа G называется матрица B(G)=[bij] размером (p x q) (p и q – количество вершин и ребер графа), элементы bij которой равны единице, если вершина xi инцидентна ребру ej и нулю, если соответствующие вершины и ребра не инцидентны.

Свойства матрицы инцидентности неориентированного графа.

1. Сумма элементов матрицы на i-й строке равна d(xi).

2. Сумма элементов матрицы по i-му столбцы равна 2.

Матрица инцидентности графа, изображенного на рис. 1, а имеет вид:

e1 E2 e3 e4 e5 e6 e7 e8 e9 e10
x1 1 1 2 0 0 0 0 0 0 0

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 142 | Загрузок: 3 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
14 Авг 2025
03:34


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz