ВЕКТОРЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ
Определение. Вектором называется направленный отрезок прямой. Точка называется началом вектора , а точка – его концом (рис. 1).
Обозначения: , .
$IMAGE6$
Определение. Длина вектора называется его модулем и обозначается $IMAGE7$, $IMAGE8$.
Определение. Координатами вектора называются координаты его конечной точки. На плоскости Oxy $IMAGE10$; в пространстве Oxyz $IMAGE11$.
Определение. Суммой и разностью векторов $IMAGE12$ и $IMAGE13$ являются соответственно векторы
$IMAGE14$;
$IMAGE15$;
произведение вектора на число l есть вектор
$IMAGE17$.
Определение. Длина вектора равна корню квадратному из суммы квадратов его координат:
$IMAGE18$ (на плоскости);
$IMAGE19$ (в пространстве).
Определение. Расстояние d между двумя точками A и B можно рассматривать как длину вектора $IMAGE20$, т.е.
$IMAGE21$ (на плоскости);
$IMAGE22$ (в пространстве).
Определение. Если два вектора $IMAGE23$ и $IMAGE24$перпендикулярны, то
$IMAGE25$ (на плоскости);
$IMAGE26$ (в пространстве).
Определение Вектор X называется собственным вектором линейного оператора A (матрицы A), если найдется такое число l, что AX=lX.
Число l называется собственным значением оператора A, заданного матрицей A, т.е. собственные значения находятся из характеристического уравнения $IMAGE27$.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
Определение Обыкновенное дифференциальное уравнение – уравнение, связывающее искомую функцию одной переменной и производные различных порядков данной функции.
Определение Порядок старшей производной – порядок дифференциального уравнения.
Определение Решение дифференциального уравнения – такая функция y=y(x), которая при подстановке ее в это уравнение обращает его в тождество.
Определение Задача нахождения решения дифференциального уравнения называется задачей интегрирования данного дифференциального уравнения.
Определение Общее решение дифференциального уравнения n- го порядка называется такое его решение $IMAGE28$, которое является функцией переменной x и n постоянных. Частное решение при конкретных значениях $IMAGE29$.
Определение Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если оно может быть представлено в виде
$IMAGE30$.
Определение Д.у. первого порядка называется однородным, если оно может быть представлено в виде
$IMAGE31$.
(Для решения используется замена t=y/x)/
Определение Дифференциальное уравнение первого порядка называется линейным, если оно имеет вид
$IMAGE32$ (линейное неоднородное).
(Сначала решаем уравнение $IMAGE33$ - линейное однородное, находим y и подставляем в исходное).
Определение Уравнение вида
$IMAGE34$
называется уравнением Бернулли.
(Для решения используется замена $IMAGE35$).
Линейные однородное д.у. второго порядка с постоянными коэффициентами
Определение Линейные однородные д.у. второго порядка с постоянными коэффициентами имеет вид
$IMAGE36$=0
(Для решения этого уравнения составляем характеристическое уравнение $IMAGE37$).
Теорема 1) Пусть характеристическое уравнение имеет действительные корни l1 и l2, причем $IMAGE38$. Тогда общее решение уравнения имеет вид
$IMAGE39$ (С1, С2 – некоторые числа).
2) Если характеристическое уравнение имеет один корень l (кратности 2),то общее решение имеет вид
$IMAGE40$ (С1, С2 – некоторые числа).
3) Если характеристическое уравнение не имеет действительных корней, то общее решение имеет вид
$IMAGE41$, где
$IMAGE42$, С1, С2 – некоторые числа.
НЕОБХОДИМЫЕ ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ О КАСАТЕЛЬНОЙ
Общее уравнение прямой:
Ax+By+C=0
Уравнение прямой с угловым коэффициентом:
y=kx+b
(k=tgj коэффициент прямой равен тангенсу угла наклона этой прямой)
Если две прямые y=k1x+b1 и y=k2+b2 параллельны, то k1=k2.
Если две прямые y=k1x+b1 и y=k2+b2 перпендикулярны, то k1*k2=-1.
Уравнение прямой, проходящей через данную точку в данном направлении(известен коэффициент k):
Пусть прямая проходит через точку M1(x1;y1) и образует с осью Ox угол $IMAGE43$
y-y1=k(x-x1)
Уравнение прямой, проходящей через две данные точки M1(x1;y1) и M2(x2;y2):
$IMAGE44$
Уравнение касательной к кривой y=f(x) в точке x0 примет вид
y-f(x0)=f¢(x0)(x-x0)
Геометрический смысл производной:
f¢(x0)=k=tga
(производная f¢(x0) есть угловой коэффициент(тангенс угла наклона) касательной, проведенной к кривой y=f(x) в точке x0)
МАТРИЦЫ
Определение: Матрицей размера m $IMAGE45$n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.
Матрица размера m $IMAGE45$n:
$IMAGE47$.
Виды матриц
Определение: Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца – матрицей (вектором)- столбцом.
Пример:
$IMAGE48$; $IMAGE49$.
Определение: Матрица называется квадратной n-го порядка, если число ее строк равно числу столбцов и равно n.
Пример:
$IMAGE50$- квадратная матрица третьего порядка.
Определение: Элементы матрицы aij, у которых номер столбца равен номеру строки (i=j), называются диагональными и образуют главную диагональ матрицы.
Определение: Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной.
Пример:
$IMAGE51$- диагональная матрица третьего порядка.
Определение: Если у диагональной матрицы n-го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей n-го порядка, она обозначается буквой E.
Пример:
$IMAGE52$ - единичная матрица второго порядка;
$IMAGE53$- единичная матрица третьего порядка.
Определение: Матрица любого размера называется нулевой, если все элементы равны нулю.
Операции над матрицами
1. Умножение матрицы на число
Каждый элемент матрицы умножается на это число.
Пример:
$IMAGE54$, 0,5 $IMAGE55$.
2. Сложение матриц
!!! Можно складывать матрицы только одинаковых размеров.
Матрицы складываются поэлементно.
Пример:
$IMAGE56$.
3. Вычитание матриц
!!! Можно вычитать матрицы только одинаковых размеров.
Матрицы вычитаются поэлементно.
Пример:
$IMAGE57$.
4. Умножение матриц
!!! Матрицу А можно умножить на матрицу В, если число столбцов матрицы А равно числу строк матрицы В.
Произведением матрицы $IMAGE58$ называется такая матрица $IMAGE59$, каждый элемент которой cij равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В.
5. Возведение в степень
Целой положительной степенью Аm (m>1) квадратной матрицы А называется произведение m матриц равных А, т.е.
$IMAGE60$.
Пример:
$IMAGE61$, найти А2.
$IMAGE62$
6. Транспонирование матрицы
Транспонированная матрица – матрица, в которой строки и столбцы поменялись местами с сохранением порядка. Обозначается $IMAGE63$.
Пример:
$IMAGE64$.
Обратная матрица
Определение: Матрица $IMAGE65$называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица, т.е.
$IMAGE66$.
!!! Обратная матрица существует и единственна тогда и только тогда, когда исходная матрица невырожденная (т.е. определитель матрицы отличен от нуля).
Алгоритм вычисления обратной матрицы:
1. Находим определитель матрицы, т.е. $IMAGE67$.
2. Находим транспонированную матрицу , т.е. $IMAGE63$.
3. Находим присоединенную матрицу, т.е $IMAGE69$ (матрица, состоящая из алгебраических дополнений к элементам транспонированной матрицы).
4. Вычисляем обратную матрицу по формуле $IMAGE70$.
5. Проверяем правильность вычисления, исходя из определения обратной матрицы.
Ранг матрицы
Определение: Ранг матрицы – это наивысший порядок, отличных от 0, миноров матрицы.
!!! Чтобы найти ранг матрицы нужно сначала привести матрицу с помощью элементарных преобразований к ступенчатому виду (все элементы, стоящие ниже главной диагонали, равны 0).
Элементарными называются следующие преобразования матриц:
1) умножение всех элементов какой-либо строки (столбца) матрицы на одно и то же число, отличное от нуля;
2) прибавление к элементам какой-либо строки (столбца) матрицы соответствующих элементов другой строки (столбца), умноженных на одно и то же число;
3) перемена местами строк (столбцов) матрицы;
4) отбрасывание строк (столбцов) матрицы, все элементы которых равны нулю.
МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
На практике часто сталкиваемся с задачей о сглаживании экспериментальных зависимостей.
Пусть зависимость между двумя переменными x и y выражается в виде таблицы, полученной опытным путем. Это могут быть результаты опыта или наблюдений, статистической обработки материала и т.п.