Пятница, 10 Янв 2025, 16:37
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51656


Онлайн всего: 54
Гостей: 54
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Матрицы. Дифференциальные уравнения


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
13 Апр 2013, 21:12

ВЕКТОРЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Определение. Вектором называется направленный отрезок прямой. Точка  называется началом вектора , а точка  – его концом (рис. 1).

Обозначения: , .

$IMAGE6$

Определение. Длина вектора называется его модулем и обозначается $IMAGE7$,    $IMAGE8$.

Определение. Координатами вектора  называются координаты его конечной точки. На плоскости Oxy $IMAGE10$; в пространстве Oxyz $IMAGE11$.

Определение. Суммой и разностью векторов $IMAGE12$ и $IMAGE13$ являются соответственно векторы

$IMAGE14$;

$IMAGE15$;

произведение вектора  на число l есть вектор

$IMAGE17$.

Определение. Длина вектора равна корню квадратному из суммы квадратов его координат:

$IMAGE18$ (на плоскости);

$IMAGE19$ (в пространстве).

Определение. Расстояние d между двумя точками A и B можно рассматривать как длину вектора $IMAGE20$, т.е.

$IMAGE21$ (на плоскости);

$IMAGE22$ (в пространстве).

Определение. Если два вектора $IMAGE23$ и $IMAGE24$перпендикулярны, то

$IMAGE25$ (на плоскости);

$IMAGE26$ (в пространстве).

Определение Вектор X называется собственным вектором линейного оператора A (матрицы A), если найдется такое число l, что AX=lX.

Число l называется собственным значением оператора A, заданного  матрицей A, т.е. собственные значения находятся из характеристического уравнения $IMAGE27$.


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Определение Обыкновенное дифференциальное уравнение – уравнение, связывающее искомую функцию одной переменной и производные различных порядков данной функции.

Определение Порядок старшей производной – порядок дифференциального уравнения.

Определение Решение дифференциального уравнения – такая функция y=y(x), которая при подстановке ее в это уравнение обращает его в тождество.

Определение Задача нахождения решения дифференциального уравнения называется задачей интегрирования данного дифференциального уравнения.

Определение Общее решение дифференциального уравнения n- го порядка называется такое его решение $IMAGE28$, которое является функцией переменной x и n постоянных. Частное решение при конкретных значениях $IMAGE29$.

Определение Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если оно может быть представлено в виде

$IMAGE30$.

Определение Д.у. первого порядка называется однородным, если оно может быть представлено в виде

$IMAGE31$.

(Для решения используется замена t=y/x)/

Определение Дифференциальное уравнение первого порядка называется линейным, если оно имеет вид

$IMAGE32$ (линейное неоднородное).

(Сначала решаем уравнение $IMAGE33$ - линейное однородное, находим y и подставляем в исходное).

Определение Уравнение вида

$IMAGE34$

называется уравнением Бернулли.

(Для решения используется замена $IMAGE35$).

Линейные однородное д.у. второго порядка с постоянными коэффициентами

Определение Линейные однородные д.у. второго порядка с постоянными коэффициентами имеет вид

$IMAGE36$=0

(Для решения этого уравнения составляем характеристическое уравнение $IMAGE37$).

Теорема 1) Пусть характеристическое уравнение имеет действительные корни l1 и l2, причем $IMAGE38$. Тогда общее решение уравнения имеет вид

$IMAGE39$ (С1, С2 – некоторые числа).

2) Если характеристическое уравнение имеет один корень l (кратности 2),то общее решение имеет вид

$IMAGE40$ (С1, С2 – некоторые числа).

3) Если характеристическое уравнение не имеет действительных корней, то общее решение имеет вид

$IMAGE41$, где

$IMAGE42$, С1, С2 – некоторые числа.


НЕОБХОДИМЫЕ ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ О КАСАТЕЛЬНОЙ

Общее уравнение прямой:

Ax+By+C=0

Уравнение прямой с угловым коэффициентом:

y=kx+b

(k=tgj коэффициент прямой равен тангенсу угла наклона этой прямой)

Если две прямые y=k1x+b1 и y=k2+b2 параллельны, то k1=k2.

Если две прямые y=k1x+b1 и y=k2+b2 перпендикулярны, то k1*k2=-1.

Уравнение прямой, проходящей через данную точку в данном направлении(известен коэффициент k):

Пусть прямая проходит через точку M1(x1;y1) и образует с осью Ox угол $IMAGE43$

y-y1=k(x-x1)

Уравнение прямой, проходящей через две данные точки M1(x1;y1) и M2(x2;y2):

$IMAGE44$

Уравнение касательной к кривой y=f(x) в точке x0 примет вид

y-f(x0)=f¢(x0)(x-x0)

Геометрический смысл производной:

f¢(x0)=k=tga

(производная f¢(x0) есть угловой коэффициент(тангенс угла наклона) касательной, проведенной к кривой y=f(x) в точке x0)


МАТРИЦЫ

Определение: Матрицей размера m $IMAGE45$n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрица размера m $IMAGE45$n:

$IMAGE47$.

Виды матриц

Определение: Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца – матрицей (вектором)- столбцом.

Пример:

$IMAGE48$;           $IMAGE49$.

Определение: Матрица называется квадратной n-го порядка, если число ее строк равно числу столбцов и равно n.

Пример:

$IMAGE50$- квадратная матрица третьего порядка.

Определение: Элементы матрицы aij, у которых номер столбца равен номеру строки (i=j), называются диагональными и образуют главную диагональ матрицы.

Определение: Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной.

Пример:

$IMAGE51$- диагональная матрица третьего порядка.

Определение: Если у диагональной матрицы n-го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей n-го порядка, она обозначается буквой E.

Пример:

$IMAGE52$ - единичная матрица второго порядка;

$IMAGE53$- единичная матрица третьего порядка.

Определение: Матрица любого размера называется нулевой, если все элементы равны нулю.

Операции над матрицами

1. Умножение матрицы на число

Каждый элемент матрицы умножается на это число.

Пример:

$IMAGE54$,  0,5 $IMAGE55$.


2. Сложение матриц

!!! Можно складывать матрицы только одинаковых размеров.

Матрицы складываются поэлементно.

Пример:

$IMAGE56$.

3. Вычитание матриц

!!! Можно вычитать матрицы только одинаковых размеров.

Матрицы вычитаются поэлементно.

Пример:

$IMAGE57$.

4. Умножение матриц

!!! Матрицу А можно умножить на матрицу В, если число столбцов матрицы А равно числу строк матрицы В.

Произведением матрицы $IMAGE58$ называется такая матрица $IMAGE59$, каждый элемент которой cij равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В.

5. Возведение в степень

Целой положительной степенью Аm (m>1) квадратной матрицы А называется произведение m матриц равных А, т.е.

$IMAGE60$.

Пример:

$IMAGE61$, найти А2.

$IMAGE62$

6. Транспонирование матрицы

Транспонированная матрица – матрица, в которой строки и столбцы поменялись местами с сохранением порядка. Обозначается $IMAGE63$.

Пример:

$IMAGE64$.

Обратная матрица

Определение: Матрица $IMAGE65$называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица, т.е.

$IMAGE66$.

!!! Обратная матрица существует и единственна тогда и только тогда, когда исходная матрица невырожденная (т.е. определитель матрицы отличен от нуля).

Алгоритм вычисления обратной матрицы:

1. Находим определитель матрицы, т.е. $IMAGE67$.

2. Находим транспонированную матрицу , т.е. $IMAGE63$.

3. Находим присоединенную матрицу, т.е $IMAGE69$ (матрица, состоящая из алгебраических дополнений к элементам транспонированной матрицы).

4. Вычисляем обратную матрицу по формуле $IMAGE70$.

5. Проверяем правильность вычисления, исходя из определения обратной матрицы.

Ранг матрицы

Определение: Ранг матрицы – это наивысший порядок, отличных от 0, миноров матрицы.

!!! Чтобы найти ранг матрицы нужно сначала привести матрицу с помощью элементарных преобразований к ступенчатому виду (все элементы, стоящие ниже главной диагонали, равны 0).

Элементарными называются следующие преобразования матриц:

1) умножение всех элементов какой-либо строки (столбца) матрицы на одно и то же число, отличное от нуля;

2) прибавление к элементам какой-либо строки (столбца) матрицы соответствующих элементов другой строки (столбца), умноженных на одно и то же число;

3) перемена местами строк (столбцов) матрицы;

4) отбрасывание строк (столбцов) матрицы, все элементы которых равны нулю.


МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

На практике часто сталкиваемся с задачей о сглаживании экспериментальных зависимостей.

Пусть зависимость между двумя переменными x и y выражается в виде таблицы, полученной опытным путем. Это могут быть результаты опыта или наблюдений, статистической обработки материала и т.п.

xi

x1

x2

xn

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 165 | Загрузок: 3 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Пятница
10 Янв 2025
16:37


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz