Среда, 08 Янв 2025, 19:25
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51656


Онлайн всего: 17
Гостей: 17
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Круговорот воды на Марсе: работа над ошибкамир


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
07 Апр 2013, 14:02

Круговорот воды на Марсе: работа над ошибками.

А.В.Родин. Институт космических исследований РАН.  

Марсианская эпопея конца уходящего столетия полна столь противоречивых событий, что, наверное, оставит о себе славу эпохи бурного декаданса в космической науке. Неспециалисту может показаться странным, с каким упорством научное сообщество отстаивало идею исследования Марса перед правительствами, общественностью и промышленными гигантами крупнейших держав мира, и с каким оптимизмом переносило одну за одной следовавшие неудачи. Из шести автоматических межпланетных зондов, запущенных к Марсу в течение 90-х годов, лишь два выполнили поставленные задачи: посадочный Pathfinder («Первопроходец») и орбитальный Mars Global Surveyor («Марсианский глобальный патруль»), хотя и у них не все прошло гладко. Благодаря высокому профессионализму своей команды, «Патруль» был буквально вытянут «за уши» (точнее – за солнечные панели) на рабочую картирующую орбиту и успешно работает по сей день. Результат – терабайты телевизионных картинок, детальная лазерная локация поверхности Марса прибором МОЛА и миллионы инфракрасных спектров, полученных спектрометром теплового излучения ТЭС. Все это во многом изменило наши представления о планете и обещает много интересного в будущем, при более тщательном анализе. Пока же компакт-диски с данными продолжают загромождать книжные полки в кабинетах большинства ученых–«марсиан», и самое время использовать этот короткий тайм-аут и попытаться сформулировать, что нового мы узнали и от каких привычных представлений придется отказаться. Остановимся на самой, наверное, интригующей проблеме марсианской климатологии – проблеме воды.

Рис. 1. Марс, хотя и напоминает пустыню, обладает сложным гидрологическим циклом. На этом снимке, полученном группой наблюдателей НАСА на Хаббловском телескопе, видна Северная полярная шапка и глобальная система облаков, опоясывающая тропики планеты во время прохождения афелия. В средних широтах заметны волновые атмосферные структуры, аналогичные тем, что порождают циклоны и антициклоны на Земле.  

Есть ли жизнь на Марсе, нет ли – науке по-прежнему неизвестно. Зато хорошо известно, что на Марсе нет важнейшего условия для существования жизни в известных нам развитых формах – на поверхности планеты нет жидкой воды. Причина этого – давление марсианского воздуха, на 95% состоящего из углекислого газа, которое составляет в среднем всего 0.006 земной атмосферы, т.е. несколько меньше тройной точки воды. Это означает, что при современных условиях не Марсе не могут существовать открытые водоемы, и вода на планете содержится либо в толще грунта в виде вечной мерзлоты, либо в виде открытых льдов и снега и, наконец, в очень небольшом количестве - в газообразном виде в атмосфере. Водоем, если бы он существовал, неминуемо бы замерз, медленно испаряясь под воздействием солнечного излучения. Таких замерзших водоемов на Марсе нет, единственный известный резервуар водяного льда – это северная полярная шапка (южная состоит в основном из замерзшей углекислоты, почему – об этом немного позже).

По последним оценкам, емкость северной полярной шапки составляет приблизительно 1.2 млн. км3 льда при средней толщине 1.03 км [5]. Это около половины ледяного купола Гренландии, или 4% от запасов воды в антарктическом леднике. Атмосферные запасы воды и вовсе ничтожны. В такой холодной атмосфере, как марсианская, где днем температура редко доходит до 300K, а ночью опускается ниже 170K, удержать сколько-нибудь заметное количество водяного пара невозможно. Если все содержащиеся в столбе воздуха пары воды осадить, получится микроскопическая пленка толщиной всего несколько десятков микрон. Еще один-два микрона осажденной воды содержится в облаках. Казалось бы, всякие разговоры о гидрологии при таком положении вещей теряют смысл. Но это очень поверхностный, утилитарный вгляд. На самом деле «круговорот воды», хотя и совсем не такой, о котором нам рассказывали в школе, вполне возможен и с такой слабой атмосферой, как марсианская. И интерес к нему не случаен. Несмотря на всю свою экзотику, Марс – это самая близкая к Земле по основным климатическим параметрам планета Солнечной системы. Именно здесь, на этом природном полигоне, в условиях, максимально приближенных к боевым, отрабатывалась климатическая система, подобная той, что дала кров всему живому на Земле. Разобраться в деталях марсианского климата – значит глубже понять наш собственный, еще на шаг продвинуться в попытке определить необходимые и, гипотетически, достаточные условия развития биосферы, что является, наверное, единственно возможной на сегодня постановкой проблемы происхождения жизни.  

Вопрос о том, куда делась марсианская вода, задавался еще в докосмическую эпоху, когда на основе наземных инфракрасных наблюдений В.И.Морозом была оценена мощность водозапасов северной полярной шапки [1]. Действительно, если Марс формировался в условиях, близких к другим планетам земной группы, из единого газопылевого диска, то и количество летучих, в том числе и воды, на них должно быть сходным. Более того, Марс, как планета, пограничная с зоной гигантов, должен был бы быть даже несколько обогащен летучими по сравнению с Землей, зона формирования которой была теплее марсианской. Те же соображения приводят к выводу, что и та часть гидросферы, которая была привнесена при ударах кометных тел на стадии интенсивной бомбардировки, для Марса должна быть по крайне мере не менее массивна, чем для Земли. Известные механизмы потерь летучих, такие как взрывной парниковый эффект, по всей вероятности приведший к практически полной потере воды Венерой, требуют больших потоков солнечного излучения и на Марсе не реализуются. Где же тогда марсианские океаны?  

Еще больше вопросов возникло после анализа изображений марсианской поверхности, полученных аппаратом «Маринер-9» и позднее двумя «Викингами» в 70-х годах. Рельеф планеты оказался испещерен сетью каньонов, напоминающих высохшие русла рек, а в устьях обширных равнин были обнаружены структуры осадочного происхождения, аналогичные шельфам и островам в дельтах рек. Открывшаяся картина на самом деле столь фантастична, что просто не могла не породить впервые высказанную Дж. Поллаком и коллегами гипотезу о том, что около 3.5 миллиардов лет назад на Марсе было «тепло и сыро», была плотная атмосфера-парник, текли реки и бушевали океаны [2]. В течение 80-х и 90-х годов гипотеза «теплого сырого раннего Марса» была явно господствующей. Она, однако, требовала объяснения, а что же произошло впоследствии, какая климатическая катастрофа постигла планету, превратив ее в холодную, практически безводную и безвоздушную пустыню?

Рис. 3. Древние равнины Марса покрывает сеть каналов, напоминающих высохшие русла рек. Однако по количественным характеристикам эти русла сильно отличаются от земных. Снимок НАСА по данным «Викинга»  

Чрезвычайно изящное решение указал Р.Кан [3], увязав процессы диссипации воды и углекислого газа, основной составляющей атмосферы. Как мы уже упоминали, атмосферное давление на Марсе близко к тройной точке воды. Пока оно превосходило этот уровень, предположил Кан, работал один из известных в геохимии циклов – карбонатно-силикатный, достаточно активный на Земле в настоящее время. Он состоит в том, что углекислый газ растворяется в каплях облаков, с осадками переносится в грунт и там участвует в цепочке реакций, приводя в конечном счете к отложению карбонатов в осадочных породах. В результате тектонических процессов карбонаты дрейфуют в мантию, где при относительно небольших температурах (около 900К) снова разлагаются, а высвободившийся углекислый газ попадает обратно в атмосферу с вулканическими выбросами. Известно, однако, что тектоника на Марсе никогда не была столь интенсивна, как на Земле, а единственный признак вулканической активности – гигантские щитовые вулканы в области Фарсиды, потухшие около миллиарда лет назад. Возможно, источник углекислоты был в какой-то момент перекрыт, а сток продолжал работать до тех пор, пока шли дожди и существовала жидкая вода – то есть пока атмосферное давление не упало до современного уровня. Но при всей своей теоретической красоте гипотеза Кана сталкивается с трудностями экспериментального харатера. Если карбонаты продолжали накапливаться в течении длительного времени, аккумулируя и атмосферу и гидросферу, они и сейчас должны присутствовать в марсианских породах. Однако ни один эксперимент наличия карбонатов на Марсе пока не показал. Хотя предлагались и предлагаются многочисленные соображения о том, что под действием солнечного ультрафиолетового излучения верхний слой пород подвергается химической модификации, своеобразному «загару», скрывающему спектральные детали карбонатов, отсутствие прямого их детектирования стало первым чувствительным ударом не только по конкретной модели диссипации атмосферы, но и по всей картине «теплого сырого Марса» в целом.  

Еще один аргумент против теплого палеоклимата пришел вместе с образцом марсианского вещества. Названные по географии первых трех образцов, найденных вблизи местечек Шерготти, Накла и Шассиньи, SNC-метеориты, осколки марсианского материала, выбитые из родительской планеты ударом метеороида и после долгого блуждания в межпланетном пространстве выпавшие на Землю, являются пока единственными образцами, доступными для анализа in vitro. Анализ воды, связанной в кристаллических решетках минералов SNC-метеоритов, свидетельствует о том, что марсианский палеоклимат был скорее похож на современный, нежели на «сырой и теплый». Постепенное накопление сомнений в устоявшейся уже гипотезе привело к тому, что в публикациях все чаще стала звучать альтернативные точки зрения на палеоклимат, в том числе и на происхождение каньонов [4, 5]. Вот их основные аргументы:  

Марсианские русла слишком глубокие и слишком прямые, чтобы быть руслами рек в нашем привычном понимании. Действительно, долина Ниргал имеет глубину около километра. Хотя она и меандрирована, равнинные реки на Земле куда более извилисты, и это при почти втрое более сильной гравитации. Остальные долины по количественным характеристикам (включая и такие параметры, как фрактальная размерность сети притоков) существенно отличаются от земных рек, но при этом достаточно близки к долинам ледников. Возможно, именно ледники ответственны за формирование сети каньонов [5]. С другой стороны, найденные в марсианских породах гематиты [6] свидетельствуют о гидротермальной активности, причем в относительно недавнюю эпоху. В толще вечной мерзлоты могут образовываться довольно крупные, толщиной 30-100 м и диаметром до 10 км, линзы жидкой воды, подогреваемой локальной тектоникой. В некоторых случаях линза может перегреться и закипеть, и тогда вытесниние объема воды, сравнимого с объемом кометы – более 1015 г – на поверхность приводит к образованию катастрофического селевого потока, образующего глубокий каньон. Существенным здесь является то, что течет уже не жидкая вода, а смесь грязи, льда и пара, причем течет лишь эпизодически. Насколько такой механизм может объяснить реальный марсианский рельеф, окончательно ответить смогут лишь детальные численные расчеты.  

Пока готовилась эта статья, появился пресс-релиз НАСА, торжественно сообщающий, что наконец найдены неоспоримые доказательства жидкой воды на Марсе. В ущелье Кандор обнаружены террасы, которые могли возникнуть в результате длительных осадочных процессов на дне древнего водоема. Правда, авторы тут же оговариваются, что это не единственно возможная интерпретация, в принципе, такие террасы могли возникнуть и в результате «сухого» атмосферного выветривания. Но пейзаж, без сомнения, впечатляет:

Рис. 4. Последнее доказательство теплого палеоклимата: древние донные отложения.

Рис. 5. Свидетельства современной активности грунтовых вод в долине Ноах (a), и на склонах каньона Ниргал (b,c).  

И, наконец, недавно были найдены совсем короткоживущие, не более нескольких десятков лет, структуры, похожие на следы просачивающейся из-под корки вечной мерзлоты жидкой воды. Характерно, что все такие «родники» обнаружены на северных склонах глубоких каньонов, где атмосферное давление хоть ненадолго, но позволяет сохранить воду от моментального холодного вскипания. Разумеется, такая смелая интерпретация, основанная лишь на изображениях, встречает довольно жесткую критику. В редакционной статье нашего журнала читатель может ознакомится с точкой зрения астрофизика-релятивиста. Будучи геофизиком-планетчиком и «марсианином», я не берусь интерпретировать эти катинки тем или иным образом. Наверное, сделать это грамотно может лишь тот, кто с геологическим молотком в руках прошел не одну сотню километров по марсианским дюнам. Будут это космонавты или автоматические марсоходы - в любом случае решать следующему поколению. Нам же остается уповать на самый надежный дистанционный метод - инфракрасную спектроскопию. Если ТЭС уверенно покажет молодые отложения минералов, характерных для открытых источников воды, скажем, растворимых солей, вблизи этих «ручейков» - значит, скорее всего, вода действительно есть. Читателя, всерьеез интересующегося возможным устройством современных грунтовых вод на Марсе, отсылаю к работе [6].  

Но марсианская гидрология – это не только палеоклимат и вечная мерзлота. Современный цикл марсианской воды – это еще около 1014 г паров в атмосфере, те самые 10-30 микрон осажденной воды, а также облака, хорошо заметные в виде белесой дымки на изображении, полученном Хаббловским телескопом (Рис. 1). Кроме того, это сезонные полярные шапки и ночные туманы, оставляющие на поверхности планеты микроскопический слой инея. Наконец, это и «дыхание» реголита, за миллиарды лет раздробленного метеоритами глинистого грунта, обладающего хорошими абсорбционными свойствами. Несмотря на относительно небольшой объем атмосферных запасов воды, именно атмосферные процессы играют определяющую роль в поддержании современного состояния поверхностных резервуаров марсианской воды. А состояние это не вполне обычное: оказывается, в Северн

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 136 | Загрузок: 4 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Среда
08 Янв 2025
19:25


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz