ОГЛАВЛЕНИЕ
Введение Глава 1. Кручение стержней имеющих в сечении правильный многоугольник §1.1 Кручение призматических стержней §1.2 Кручение стержней прямоугольного сечения §1.3 Мембранная аналогия §1.4 Кручение тонкостенных стержней открытого профиля Глава 2. Кручение стержней имеющих в сечении круг и эллипс §2.1 Кручение стержней круглого и эллиптического сечений §2.2 Кручение тонкостенных труб §2.3 Кручение круглых валов переменного диаметра Глава 3. Кручение призматических и цилиндрических стержней §3.1 Чистое кручение стержней постоянного сечения §3.2 Чистое кручение круглых стержней (валов) переменного сечения Глава 4. Задачи Заключение Литература
ВВЕДЕНИЕ
Данная выпускная квалификационная работа состоит из четырех глав. В первой главе излагается прямой, обратный и полуобратный методы, применяемые при решении задач о кручении стержня прямоугольного сечения. Исследованы приближенные методы решения задач о кручении более сложных сечений. Вторая глава посвящена изучению кручения стержней в сечении имеющих форму круга или эллипса. Применяют метод перехода к полярным координатам. В третьей главе исследуется кручение призматических и цилиндрических стержней, исследуются общие построения данной теории и их различия. В четвертой главе изучают теоретическое применение к решению задач.
Глава 1. КРУЧЕНИЕ СТЕРЖНЕЙ, ИМЕЮЩИХ В СЕЧЕНИИ ПРАВИЛЬНЫЙ МНОГОУГОЛЬНИК
§1.1 Кручение призматических стержней
Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений теории упругости совместно с заданными граничными условиями, не всегда возможен. Для многих задач удобно применять так называемые обратный и полуобратный методы. При пользовании обратным методом выясняют, каким граничным условиям соответствуют некоторые функции, удовлетворяющие дифференциальным уравнениям. Таким путем можно получить ряд полезных результатов. Полуобратный метод, впервые предложенный Сен-Венаном, состоит в том, что делают некоторые допущения в отношении напряжений или перемещений. При этом дифференциальные уравнения настолько упрощаются, что решение их не представляет особых математических трудностей. Принимая те или иные допущения, мы, как правило, ограничиваем общность полученного решения; но обычно их можно формулировать таким образом, чтобы все же получить решение частных задач. Например, в рассматриваемой ниже задаче о кручении призматического стержня мы будем задаваться определенными функциями для перемещений и, v, w, сводя, таким образом, основные уравнения к одному дифференциальному уравнению. Но при таких допущениях мы можем найти решение задачи о кручении стержней только постоянного сечения; решения же для стержней, не являющихся призматическими, получить этим путем нельзя. Полуобратный метод является одним из самых эффективных методов решения задач теории упругости.
рис. 1
Предположим, что один конец стержня призматического сечения, длины L, закреплен в плоскости ху, а на другой конец действует пара, вектор-момент который направлен вдоль оси z (рис. 1). Мы полагаем, что закрепленный конец не может вращаться, но что оба конца могут свободно перемещаться друг относительно друга в направлении z. Под действием пары стержень будет закручиваться, причем образующие цилиндра будут превращаться в винтовые линии. Угол поворота любого поперечного сечения зависит от расстояния, на котором находится это сечение от закрепленного конца. При малой деформации можно считать, что угол закручивания пропорционален расстоянию между сечением и закрепленным концом. Таким образом,
z, (1)
рис. 2 где угол закручивания на единицу длины. Будем считать угол закручивания малым. Рассмотрим сечение стержня, которое находится на расстоянии z от закрепленного конца. Точка Р с координатами x, y, z в результате деформации перемещается в точку Р’(x+u, y+v, z+w). На рисунке 2 показана точка Р’1, являющаяся проекцией Р’ на плоскость xy. Предположим, что в плоскости xy точка Р перемещается в Р’1 при повороте на угол закручивания , причем ОР ОР’1= r. Если угол мал, то cos 1 и sin . Следовательно,
Подставляя значение (1), получаем
(2)
таким оказывается закон изменения u и v. В отношении w не будем пока делать никаких допущений, кроме того, что w зависит только от x и y и не зависит от z . Следовательно, можно записать
(3)
где - некоторая функция от x и y .Так как w определяет искажение (депланацию) торцевых сечений, то функцию можно назвать функцией депланацией. Необходимо выяснить, будут ли отвечать принятые выражения для перемещений, вместе с неизвестной еще функцией , напряженному состоянию, удовлетворяющему заданным граничным условиям. Эти условия в данном случае состоят в том, что на обоих торцах должны действовать, только крутящие моменты и что боковая поверхность стержня свободна от сил. Пользуясь приведенными выше выражениями для перемещений, находим:
(4)
Из закона Гука следует:
(5)
Подставим эти значения в уравнения равновесия, которые будут выполняться, в случае, если функция удовлетворяет уравнению
для всех точек поперечного сечения R стержня, здесь
- оператор Лапласа. Обратимся к граничным условиям. Так как
на боковой поверхности стержня, то уравнений примет следующий вид:
на контуре S,
где S - контурная линия поперечного сечения стержня. Покажем, далее, что на двух других граничных поверхностях, а именно, на торцах стержня, определяемых плоскостями z=0 и z=L, напряжение (5) сводятся к скручивающей паре, и результирующие силы отсутствуют. Результирующая сила в направлении x равна
; (8)
это выражение можно привести к виду
. (9)
При получении уравнения (9) были использованы соотношения
рис. 3
здесь принято
в соответствии с уравнением (6). Пусть f является некоторой функцией x и y; тогда можно выписать равенства (рис. 3):
где f1 и f2 - значение функции f на правой и левой частях контура. Выполним интегрирование по y для контурной кривой в границах от y=yA до y=yB. Если мы будем вести интегрирование функции f по контуру в направлении против часовой стрелки, то для правой части контура приращение dy - положительно, а для левой - отрицательно. В результате каждая из величин f1dy и (- f2dy) окажется положительной, и, следовательно,
. (10)
Аналогично,
(11)
Пользуясь формулами (10) и (11), придадим выражению (9) вид:
. (12)
Будем считать положительными направления вдоль нормали N во внешнюю сторону и вдоль контура – против часовой стрелки; тогда согласно рис.3,б получим
(13)
Равенство (12) принимает вид
при этом выражение
обращается в нуль на контуре S в соответствии с уравнением (7). Мы пришли, таким образом, к равенству
Таким же путем можно показать, что составляющая результирующей силы вдоль оси также равна нулю:
Следовательно, результирующие силы по торцам цилиндра обращаются в нуль. Результирующий крутящий момент T по торцам стержня, отвечающий принятому распределению напряжений, равен:
(14)
Интеграл, фигурирующий в выражении (14), зависит от функции кручения и, следовательно, от вида поперечного сечения R стержня. Вводя обозначение
(15)
Получим
(16)
где J – постоянная кручения. Уравнение (16) показывает, что крутящий момент пропорционален углу закручивания на единицу длины, так что произведение является мерой жесткости стержня, подвергаемого кручению; величина эта называется крутильной жесткостью стержня.
§1.2 Кручение стержней прямоугольного сечения
Пусть поперечное сечение стержня представляет собой прямоугольник с центром в начале координат и со сторонами 2a и 2b, направленными параллельно координатным осям, как показано на рис.7. Пользуемся полученными ранее уравнениями: для всей прямоугольной области
рис.7
(6)
и по контору
(7)
На контурных линиях AB и CD, где x= |