Понедельник, 23 Июн 2025, 15:16
Uchi.ucoz.ru
Меню сайта
Форма входа
Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51666


Онлайн всего: 7
Гостей: 7
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Кривые и поверхности второго порядка


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
10 Апр 2013, 19:01

Кафедра высшей математики

Курсовая работа

По линейной алгебре и аналитической геометрии

«Кривые и поверхности второго порядка»


Дубна 2002


Оглавление

Введение

Часть I. Исследование кривой второго порядка

1. Определение типа кривой с помощью инвариантов

2. Приведение к каноническому виду

3. Построение графиков

4. Вывод

Часть II. Исследование поверхности второго порядка     

1. Определение типа поверхности.

2. Приведение к каноническому виду

3. Исследование формы поверхности методом сечений

4. Графики уравнения поверхности.

5. Вывод


Введение

Цель:

Целью данной курсовой работы является исследование кривой и поверхности второго порядка. Закрепление теоретических знаний и практических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.

Постановка задачи:

I) Для данного уравнения кривой второго порядка:

1) Определить тип кривой с помощью инвариантов.

2) При a=0 записать каноническое уравнение прямой и определить расположение центра

3) Привести уравнение к каноническому виду, применяя параллельный перенос и поворот координатных осей.

II) Для данного уравнения плоскости второго порядка:

1) Исследовать форму поверхности методом сечений плоскостями, построить линии, полученные в сечениях.

2) Построить поверхность в канонической системе координат.


Часть I. Исследование кривой второго порядка

1. Определение типа кривой с помощью инвариантов

Для данного уравнения кривой второго порядка:

(5 - a)x2 + 4xy + 3y2 + 8x – 6y +5 = 0     (3.1)

определить зависимость типа кривой от параметра a с помощью инвариантов.

Для данного уравнения кривой второго порядка:

a11 = 5 - a, a12 = 2, a13 = 4, a22 = 2, a23 = -3, a33 = 5

Вычислим инварианты:

I1 = a11 + a22 = (5 - a) +2 = 7 - a

I2 = =  = (5 - a)2 – 4 = 6 -2a

I2 = = = (5 - a)10-24-24-32-9(5 - a)-20 = -a-95

Согласно классификации кривых второго порядка:

I. Если I2 = 0, то данное уравнение (3.1) определяет кривую параболического типа:

I= 6 - 2a = 0, следовательно, при a = 3 уравнение определяет кривую параболического типа.

При a = 3 I= - a - 95 = -3 - 95 = 98 ¹ 0. Значит, при a = 3 уравнение (3.1) задаёт параболу.

II. Если I2 ¹ 0, то задаваемая кривая является центральной. Следовательно, при a ¹ 3 данное уравнение задаёт центральную кривую.

1. Если I2 > 0, то уравнение задаёт кривую эллиптического типа:

Значит, при a < 3 уравнение (3.1) задаёт кривую эллиптического типа.

a. Если I1 I3 < 0, то уравнение определяет эллипс:

I1 I3 = - (7 - a)(a+95) = a2+88a-665 < 0, при решении получаем a Î (-95 , 7). Следовательно, при a Î (-95 , 3) уравнение (3.1) задаёт эллипс.

b. Если I1 I3 > 0, то уравнение определяет эллипс:

I1 I3 = a2+88a-665 > 0, при решении получаем a Î (-¥, -95). Следовательно, при a Î (-¥ , -95) уравнение (3.1) задаёт мнимый эллипс.

c. Если I3 = 0, то уравнение определяет две мнимые пересекающиеся прямые:

I3 = -a - 95 = 0, при решении получаем a - 95. Следовательно, при a = - 95 уравнение (3.1) задаёт две мнимые пересекающиеся прямые.

2. Если I2 < 0, то уравнение задаёт кривую гиперболического типа:

Значит, при a > 3 уравнение (3.1) задаёт кривую гиперболического типа.

a. Если I3 ¹ 0, то уравнение определяет гиперболу:

I3 = -a - 95 ¹ 0, получаем a ¹ -95. Следовательно, при a Î (3 , +¥) уравнение (3.1) задаёт гиперболу.

Согласно полученным данным, построим таблицу:

a Î (-¥ , -95) a = -95 a Î (-95 , 3) a = 3 a Î (3 , +¥)
Мнимый эллипс Две мнимые пересекающиеся прямые Эллипс Парабола Гипербола

2. Приведение к каноническому виду

При a = 0 уравнение (3.1) принимает вид:

5x2 + 4xy + 2y2 + 8x - 6y + 5 = 0                                                    (3.2)

Приведем уравнение кривой (3.2) к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей. Мы установили, что данная кривая — центральная, поэтому используем методику приведения к каноническому виду для уравнения центральной кривой.

a) Характеристическое уравнения для данной кривой будет иметь вид:

A(x, y) = 5x2 + 4xy + 2y2

$IMAGE6$

Откуда следует, корни характеристического уравнения есть: l1 = 1, l2 = 6.

Расположение эллипса относительно начальной системы координат будет известно, если мы будем знать координаты центра и угловой коэффициент вещественной оси эллипса.

Уравнения для определения координат центра имеют вид:

$IMAGE7$

Откуда мы находим x0 = - $IMAGE8$ и y0 = $IMAGE9$. Следовательно, точка O¢ (- $IMAGE8$, $IMAGE9$) есть центр данной кривой.

Угловой коэффициент оси O¢X можем определить по формуле:

$IMAGE12$                                            

б) Совершим параллельный перенос начала координат в точку O¢ (x0, y0). При этом координаты x, y произвольной точки плоскости в системе координат xOy и координаты x', y'  в новой системе координат x'O'y'  связаны соотношениями:

$IMAGE13$

Подставив данные выражения в уравнение (3.1), получим:

5(x0 + x¢)2 + 4(x0 + x¢)(y0 + y¢) + 2(y0 + y¢)2 + 8(x0 + x¢) - 6(y0 + y¢) + 5=0

Раскрыв скобки и приведя подобные члены, получим:

5x¢2+4x¢y¢+2y¢2+(10x0+4x0 + 8)x¢ + (4x0 + 4y0 - 6)y¢ + (5x02 + 4x0y0 + 2y02 + 8x0 - 6y0 + 5) = 0 (3.3)

В данном уравнении коэффициенты при x¢ и y¢ приравняем к нулю и получим систему уравнений:

$IMAGE14$

Решив эту систему уравнений, мы получим, найденные уже раннее, координаты центра O¢ , x0 = - $IMAGE8$ и y0 = $IMAGE9$. Подставив данные значения в уравнение (3.3), коэффициенты при x¢ и y¢ станут равными нулю, мы получим уравнение в системе координат x'O'y' :

5x¢2 + 4x¢y¢ + 2y¢2 + ( $IMAGE17$) = 0

5x¢2 + 4x¢y¢ + 2y¢2 - $IMAGE18$ = 0                                                             (3.4)

в) Так как a12 = 2 ¹ 0, то для дальнейшего упрощения необходимо произвести поворота осей координат на угол a. При повороте осей координат на угол a  координаты x', y'   произвольной точки М плоскости в системе координат x'O'y' и координаты  X,  Y  в новой системе координат  XO'Y связаны соотношениями:

$IMAGE19$

Подставим данные выражения в уравнение (3.4), получим:

5(Xcosa - Ysina)2 + 4(Xcosa - Ysina)(Xsina + Ycosa) + 2(Xsina + Ycosa)2 - $IMAGE18$ = 0

(5cos2a + 4sinacosa + 2sin2a)X2 + (-6sinacosa + 4cos2a - 4sin2a)XY +

(5sin2a - 4sinacosa + 2cos2a)Y2 - $IMAGE18$ = 0                     (3.5)

В полученном выражении найдём такой угол a, чтобы коэффициент при XY стал равен нулю, для этого необходимо:

-6sinacosa + 4cos2a - 4sin2a = 0

2tg2a + 3tga - 2=0

Откуда, при решении, находим два значения tga = -2 и tga = $IMAGE22$.

В первом задании мы нашли, что угловой коэффициент вещественной оси O'X  эллипса равен k = -2. Так как угловой коэффициент равен тангенсу, то из двух найдённых значений выберем tga = -2. Следовательно:

cosa = $IMAGE23$ ,      sina = $IMAGE24$

Подставив данные значения для sina и cosa в уравнение (3.5), коэффициент при XY станет равным нулю, получим:

( $IMAGE25$)X2 + ( $IMAGE26$)Y2 - $IMAGE18$ = 0

X2 + 6Y2 - $IMAGE18$ = 0

$IMAGE29$                                       (3.6)

- это каноническое уравнение данной кривой (3.1) при a = 0.

3. Построение графиков

 Подтвердим результаты проведённого исследования данного уравнения кривой (3.1) второго порядка, построив соответствующие графики кривых при разных a.

При  a = 3 уравнение (3.1) принимает вид:

2x2 + 4xy + 3y2 + 8x – 6y +5 = 0

Графиком данного уравнения является парабола:

$IMAGE30$

При a = 6 уравнение (3.1) принимает вид:

x2 + 4xy + 3y2 + 8y2 – 6y +5 = 0

Графиком данного уравнения является гипербола:

$IMAGE31$

При a = 0 уравнение (3.1) принимает вид

5x2 + 4xy + 3y2 + 8y2 – 6y +5 = 0

Графиком данного уравнения является эллипс. Изобразим в данной системе также график канонического уравнения эллипса (3.6):

$IMAGE32$


4. Вывод

Исследовав данное общее уравнение кривой второго порядка,  мы установили, что при значении параметра a = 0 уравнение задаёт эллипс. Привели уравнение к каноническому виду, применяя преобразования параллельного переноса и поворота. При параллельном переносе коэффициенты при первых степенях стали равны нулю, при повороте координатных осей коэффициенты при смешанном произведении стали равны нулю. Построили графики для всех фигур, которое может задавать данное уравнение, построили график эллипса в общей и канонической системе координат.


Часть II. Исследование поверхности второго порядка

1. Определение типа поверхности

Для данного уравнения поверхности второго порядка:

4x2 - z2 + 12xz + 6y - 8z + 5 = 0                                                      (4.1)

Определить тип поверхности с помощью инвариантов.

$IMAGE33$ 4 + 0 -1 = 3

$IMAGE34$= - 4 – 36 = - 40

$IMAGE35$

$IMAGE36$

$IMAGE37$

$IMAGE38$

Определим характер расположения центра: Данная поверхность не имеет центра, так как выполняется условие I3 = 0, I4 ¹ 0. При этом инвариант I4 = 360 > 0, следовательно, графиком уравнения (4.1) является гиперболический параболоид.


2. Приведение к каноническому виду

Совершим параллельный перенос начала координат в некоторую точку O'(x0 ,y0, z0). При этом координаты x, y, z произвольной точки пространства в системе координат Oxyz и координаты x', y', z' этой же точки в новой системе координат в системе координат O'x'y'z' связаны соотношением:

$IMAGE39$                                                                    (4.2)

Подставляя уравнения (4.2) в уравнение (4.1) получим уравнение поверхности S в ново

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 381 | Загрузок: 9 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Понедельник
23 Июн 2025
15:16


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz