Четверг, 05 Дек 2024, 00:42
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51650


Онлайн всего: 35
Гостей: 35
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Комбинаторные условия фасетности опорных неравенств


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
13 Апр 2013, 13:06

Р.Ю. Симанчев, Омский государственный университет, кафедра математического моделирования

Пусть E- конечное множество, H- некоторое семейство его подмножеств. Мы будем рассматривать комбинаторно полные семейства, то есть семейства H, удовлетворяющие следующим аксиомам:

1) для любого eE найдутся такие H1H и H2H, что eH1H2;

2) для любых e1, e2E найдется такой HH, что e1H и e2H.

Сопоставим множеству E E-мерное евклидово пространство RE посредством взаимнооднозначного соответствия между E и множеством координатных осей пространства RE. Иными словами, RE можно мыслить как пространство вектор-столбцов, координаты которых индексированы элементами множества E. Для каждого R E определим его вектор инциденций xRRE как вектор с компонентами xeR = 1 при eR, xeR=0 при eR. Таким образом, множеству всех подмножеств множества E ставится во взаимнооднозначное соответствие множество всех вершин единичного куба в RE. На основании этого соответствия в дальнейшем там, где это не вызовет недоразумений, (0,1)-вектор xRE будем одновременно понимать как подмножество множества E.

Нас будет интересовать следующий многогранник, ассоциированный с семейством H,

PH = conv{ xH RE | H H }.

Перечислим некоторые очевидные свойства многогранника PH.

1) Каждая вершина многогранника PH является (0,1)-вектором. 2) Вершины и только они соответствуют множествам семейства H. 3) Многогранник PH не имеет целочисленных точек, отличных от вершин.

Пусть aRE, a0R. Линейное неравенство aTxa0 называется опорным к многограннику P(H), если aTxa0 для любого xP(H). Всякое опорное неравенство порождает грань многогранника (возможно несобственную). Максимальные по включению грани называются фасетами, а порождающие их опорные неравенства, соответственно, - фасетными. Принципиальная роль фасетных неравенств обуславливается, во-первых, тем, что они присутствуют в любой линейной системе, описывающей многогранник, во-вторых, эффективность их использования в качестве отсечений при решении соответствующих экстремальных комбинаторных задач (см., например, [3]).

В настоящей работе получены достаточные условия фасетности опорного неравенства, имеющие комбинаторную природу.

Через aff P(H) обозначим аффинную оболочку многогранника P(H). Как известно, существуют такие матрица A и вектор-столбец , что

aff P(H)={xRE | ATx =  }.

Далее везде, не ограничивая общности, будем полагать, что матрица A в линейном описании аффинной оболочки имеет полный ранг.

Каждая строка матрицы A соответствует ровно одному элементу eE и наоборот. Поэтому множество строк матрицы A будем обозначать через E. Множество столбцов обозначим буквой V. Ясно, что rankA=VE. Положим V=n. Согласно введенным обозначениям, для коэффициента матрицы A, находящегося в строке eE и столбце uV, будем использовать запись aeu. Обозначим через Ve множество столбцов матрицы A, имеющих в строке e ненулевой элемент. Для S E положим VS =eSVe. Если cRE, то через (cA) (соответственно, (Ac)) обозначим матрицу, полученную приписыванием к матрице A слева (соответственно, справа) столбца c, а через D(c,E) подматрицу матрицы (cA), образованную строками E~E.

Пусть cTx  c0 - опорное к P(H) неравенство. Нам понадобятся следующие определения.

Непустое множество SE будем называть cH-множеством, если существуют такие H1,H2H, что 1) S=(H1H2)(H2H1)   и  2) cTxH1 = cTxH2 = c0;

Будем говорить, что элемент e0E является cH-следствием некоторого множества E~E, если существует такое упорядоченное множество e1, e2, ... ,et = e0, что для любого i{1,2,,t} элемент ei принадлежит некоторому cH-множеству, лежащему в E~{e1,e2,,ei} .

Лемма. Пусть affP(H)={xRE|ATx=}RE и SE - cH-множество. Тогда для каждого uVS имеет место соотношение eSH2 aeu = eSH1 aeu, где H1,H2H - из определения cH-множества.

Доказательство. Пусть aTx=u - соответствующее уравнение из системы, определяющей аффинную оболочку многогранника P(H). Ясно, что оно справедливо и для векторов xH1 и xH2. Заметим также, что SH2 = H1H2 и SH1=H2H1. Теперь 0 = aTxH1-aTxH2 = aT(xH1-xH2) = aT(xH1H2 - xH2H1) = aTxSH2 - aTxSH1 =eSH2 aeu = eSH1 aeu. Теорема. Пусть cTx c0 - опорное к P(H) неравенство, F={xP(H) | cTx = c0}. Для того, чтобы грань F являлась фасетой многогранника P(H), достаточно существования такого E~E, что 1) E~=n+1; 2) всякое eE E~ является cH-следствием множества E~; 3) матрица D(c,E~) имеет полный ранг.

Доказательство. Пусть bTx b0 - опорное к P(H) неравенство, удовлетворяющее условию

{xP(H) | cTx = c0}  {xP(H) | bTx = b0} . (1)

 Покажем, что тогда система линейных уравнений

c + A = b (2)

относительно неизвестных mR и lRn совместна, причем   0. Очевидно, что в этом случае будет также иметь место равенство b0 = c0 +T. Как известно, из совместности системы (2) следует, что грань F, индуцированная неравенством cTx c0, является фасетой многогранника P(H) (см. [1])

Всякое уравнение системы (2) соответствует единственному eE. Обозначим ее уравнения через (e), eE, имея ввиду и правые, и левые их части, то есть (e): ce+uV  aeuu = be.

Пусть SE - cH-множество и H1,H2H - множества, указанные в соответствующем определении. По определению cTxH1 = cTxH2 = c0. Следовательно,

0 = cTxH1 - cTxH2 = cT(xH1 - xH2) =  cT(xSH2 - xSH1) = cTxSH2 - cTxSH1 =eSH2 be - eSH1 be (3)

Так как, в силу (1), bTxH1 = bTxH2 = b0, то из аналогичных выкладок получаем

eSH2 be - eSH1 be= 0 (4)

Заметим, что в предыдущей лемме фигурирует такая же, как в (3) и (4), комбинация элементов в остальных столбцах системы (2). Таким образом, сумма строк SH2 минус сумма строк SH1 в матрице (cAb) дает нулевую строку. Значит, уравнения (e), eS связаны следующим линейным соотношением:

eSH2 (e) - eSH1 (e) = 0 (5)

что означает их линейную зависимость. Поэтому, если SE является cH-множеством, то любое одно уравнение из семейства {(e), eS} может быть отброшено из системы (2) без ущерба для ее совместности.

Теперь, используя индукцию и основываясь на (5), покажем, что подсистема

D(c,E~)-=b~ (6)

где b~ = (be : eE~), - = (,T)TRn+1, эквивалентна системе (2). Иными словами, покажем, что всякое уравнение (e) при eE E~ может быть отброшено из системы (2). Индукцию проведем по числу элементов в упорядоченном множестве {e1, e2, ,et} , необходимом для того, чтобы элемент etE E~ являлся cH-следствием множества E~, то есть по числу t. Если t=1, то, как показано, из (5) следует, что (e) может быть отброшено из системы (2). Пусть EE E~ - множество таких cH-следствий множества E~, для которых существует упорядоченное множество длины не более чем t, и пусть уравнения (e) при eE могут быть отброшены из системы (2). Возьмем e*E (E~E), для которого длина соответствующего упорядоченного множества равна t+1. По условию теоремы, существует такое cH-множество S, содержащее e*, что S {e*}  E~E. Тогда, в силу (5), (e*) является линейной комбинацией уравнений (e), eS {e} , каждое из которых, по индукционному предположению, является линейной комбинацией уравнений (e), eE~.

Таким образом, действительно, системы (6) и (2) эквивалентны.

По условию теоремы, rank D(c,E~) = E~ = n+1. Следовательно, ранг расширенной матрицы системы (6) равен рангу основной. Значит, система (6), а вместе с ней и система (2), совместны. При этом решение системы (2) нетривиально, ибо в противном случае b = o.

Остается показать, что   0. Так как cTx  c0 опорно к P(H), то существуют такие x1,x2H, что cTx1 = c0 и cTx2c0. Тогда, в силу (1), bTx1 = b0 и bTx2  b0. Отсюда

0  bT(x1-x2) = (cT +TAT)(x1-x2) =  (cTx1-cTx2) + T - T

Так как cTx1cTx2, то   0. Отметим, что в общем случае приводимая здесь техника является достаточно громоздкой. Однако конкретизация семейства H, аффинной оболочки соответствующего многогранника и самого опорного неравенства позволяет получать конструктивные результаты. Так, например, в [2] посредством данной техники описаны три класса ранговых неравенств, индуцирующих фасеты многогранника связных k-факторов полного графа.

Список литературы

Схрейвер А. Теория линейного и целочисленного программирования: В 2 т. М.: Мир, 1991.

Симанчев Р.Ю. О ранговых неравенствах, порождающих фасеты многогранника связных k-факторов // Дискретный анализ и исследование операций. 1996. Т.3. N 3. С.84-110.

Grotschel M., Holland O. Solution of large-scale symmetric travelling salesman problems // Mathematical Programming.  1991. N 51. P. 141-202.

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 153 | Загрузок: 2 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
05 Дек 2024
00:42


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz