Среда, 08 Янв 2025, 19:53
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51656


Онлайн всего: 25
Гостей: 25
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Измеримые функции


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
14 Апр 2013, 11:36

Определение и простейшие свойства измеримой функции

Если каждому x из множества E поставлено в соответствие некоторое число f(x), то мы будем говорить, что на множестве E задана функция f(x). При этом мы допускаем и бесконечные значения функции, лишь бы они имели определенный знак, т.е. вводим «несобственные» числа -  и + . Эти числа связаны между собой и с любым конечным числом a неравенствами

                                                    - <a<+ ,

и мы устанавливаем для них следующие законы действий:

+ ±a=+ ,     + +(+ )=+ ,      + -(- )=+ ,

- ±a=- ,       - +(- )=- ,          - -(+ )=- ,

½+ ½=½- ½=+ ,        + ×a=a×(+ )=+ ,

    - ×a=a×(- )=- ,   если a>0,

+ ×a=a×(+ )=- ,

- ×a=a×(- )=+ ,   если a<0

0×(± )=(± )×0=0,

(+ )×(+ )=(- )×(- )=+ ,

(+ )×(- )=(- )×(+ )=- ,

$IMAGE48$=0.

Здесь a обозначает вещественное конечное число. Символы

+¥-(+¥),    -¥-(-¥),     +¥+(-¥),        -¥+(+¥).

$IMAGE49$, $IMAGE50$

мы считаем лишенными смысла.

Имея дело с функцией f (x), заданной на множестве E, мы будем символом

E(f>a)

обозначать множество тех x из множества Е, для которых выполнено неравенство f(x)>а.

Аналогичным образом вводятся символы

Е(f³а),   Е(f=а),    Е(f£а),    Е(а<f£b)

и т.п. Если множество, на котором задана функция f(x), обозначено какой-либо другой буквой, например А или В, то мы соответственно будем писать

А(f>а),         В(f>а)

и т.п.

Определение 1. Функция f(x), заданная на множество Е, называется измеримой, если измеримо это множество Е и если при любом конечном а измеримо множество

Е(f>а).

В связи с тем, что здесь  речь идет о множествах, измеримых в смысле Лебега, часто (желая подчеркнуть именно это обстоятельство) говорят об измеримой (L) функции. Если же Е и все множества Е(f>а) измеримы (В), то и f(x) называется измеримой (В) функцией.

Теорема 1. Всякая функция, заданная на множестве меры нуль, измерима.

Это утверждение очевидно.

Теорема 2. Пусть f(x) есть измеримая функция, заданная на множестве Е. Если А есть измеримое подмножество Е, то f(x), рассматриваемая только для xÎА, измерима.

Действительно, А(f>а) =А×Е (f>а).

Теорема 3. Пусть f(x) задана на измеримом множестве Е, представимом в форме суммы конечного числа или счетного множества измеримых множеств Еk :

                                 E= $IMAGE51$×

Если f(x) измерима на каждом из множеств ER., то она измерима и на Е.

В самом деле, E(f>a)= $IMAGE52$.

Определение 2. Две функции f(x) и g(x), заданные на одном и том же множестве Е, называются эквивалентными, если

mE (f¹g)=0

Обозначать эквивалентность функций f(x) и g(x) принято так: 

f (x) ~g(x).

Определение 3. Пусть некоторое обстоятельство S имеет место для всех точек какого-нибудь множества Е, кроме точек, входящих в подмножество Е0 множества Е. Если mЕ= 0, то говорят, что S имеет место почти везде на множестве Е, или почти для всех точек Е.

В частности, множество исключительных точек Еможет быть и пустым.

Теперь можно сказать, что две функции, заданные на множестве Е, эквиваленты, если они ровны почти везде на Е.

Теорема 4. Если f(х) есть измеримая функция, заданная на множестве Е, а g(x) ~ f(x), то g(x) также измерима.

Д о к а з а т е л ь с т в о. Пусть А = Е (f ¹ g), B = E – A. Тогда mA = 0, так что В измеримо. Значит функция f(x) измерима на множестве В. Но на множестве В функции f(x) и g(x) неотличимы, так что g(x) измерима на В. Поскольку g(x) измерима и на А (ибо mA = 0), она измерима на Е = А + В.

  Теорема 5. Если для всех точек измеримого множества Е будет f(x) = c, то функция f(x) измерима.

Действительно,

E (f > a) = $IMAGE53$     $IMAGE54$   $IMAGE55$

Заметим, что в этой теореме с может быть и бесконечным.

Функция f(x), заданная на сегменте [а, b], называется ступенчатой, если [а,b] разложить точками.

с0 = а< с12<…<сn = b

на конечное число частей,  в н у т р и  которых (т.е. в интервалах (сk, ck + 1) при k = 0, 1, …., n –1) функция f(x) постоянна. Легко понять, что из теоремы 5 вытекает

Следствие. Ступенчатая функция измерима.

Теорема 6. Если f(x) есть измеримая функция, заданная  на множестве Е, то при любом а измеримы множества

E (f ³ a),   E (f = a),    E (f £ a),   E (f < a),

Д о к а з а т е л ь с т в о. Легко проверить, что

E (f ³ a) = $IMAGE56$

откуда следует измеримость множества E (f ³ a). Измеримость прочих множеств вытекает из соотношений:

E (f = a) = E(f ³ a) – E(f > a),     E(f £ a) = E – E(f > a),

E (f < a) = E – E (f ³ a).

Замечание.  Легко показать, что если хоть одно из множеств

E (f ³ a),  E (f £ a),  E (f < a)

оказывается измеримым при всяком  а, то функция f(x) измерима на множестве Е (которое также предполагается измеримым).

Действительно, тождество $IMAGE57$ $IMAGE58$) показывает, например, что f(x) измерима, если измеримы все множества Е (f³а). Сходным образом устанавливаются и остальные утверждения. Таким образом, в определении измеримой функции можно заменить множество  Е (f>a) любым из множеств (1).

Теорема 7.  Если функция f(x), заданная на множестве Е, измерима, а k конечное число, то измеримы и функции 1) f(x) + k, 2) kf(x), 3) çf (x)ç, 4) f2 (x), и если f(x) ¹0, то измерима и функция 5) $IMAGE59$.

Д о к а з а т е л ь с т в о. 1) Измеримость функции f(x) + k вытекает из соотношения Е (f+ k >a) = E (f>a- k).

2) Измеримость функции kf(x) при k =0 следует из теоремы 5. Для прочих k  измеримость следует из очевидных соотношений

$IMAGE60$

3) Функция çf(x) ç измерима потому, что

$IMAGE61$

4) Аналогично, из того , что

E (f2 > a) = $IMAGE62$

вытекает измеримость функции f 2 (x).

5) Наконец, при f(x) ¹ 0 имеем

$IMAGE63$> a) = $IMAGE64$ $IMAGE65$

откуда и следует измеримость $IMAGE66$.

Теорема 8. Функция f(x), заданная и непрерывная на сегменте Е= $IMAGE67$, измерима.

 Д о к а з а т е л ь с т в о. Прежде всего установим, что множество

F = E (f£ a)

замкнуто. Действительно, если x0 есть предельная точка этого множества и xn®x0   (x n  ÎF ), то f(xn) £a  и, в силу непрерывности f(x), будет  f(x0 ) £a,  т.е. x0 ÎF, что и устанавливает замкнутость множества F.

Но тогда множество Е (f>а) = Е – Е(f£а) измеримо, и теорема доказана.

Из самого определения измеримой функции следует, что функция, заданная на неизмеримом множестве, неизмерима.

Однако легко обнаружить существование неизмеримой функции, заданной на измеримом множестве.

Определение 4.  Пусть М есть подмножество сегмента Е = [А, В]. Функция jм (х), равная единице на множестве М и нулю на множестве Е–М, называется характеристической функцией множества М.

Теорема 9.  Множество М и его характеристическая функция jм одновременно измеримы или нет.

Д о к а з а т е л ь с т в о.  Если функция jM (х) измерима, то измеримость множества М вытекает из соотношения

М = Е (jм > 0).

Обратно, если М есть измеримое множество, то соотношения

$IMAGE68$

устанавливают измеримость функции jМ (х).

Отсюда, между прочим, весьма просто получаются примеры разрывных измеримых функций.

Дальнейшие свойства измеримых функций

Лемма.  Если на множестве Е заданы две измеримые функции f(х) и g(х), то множество Е (f >g) измеримо.

Действительно, если мы перенумеруем все рациональные числа r1, r2, r3, …, то легко проверим справедливость соотношения

Е (f > g) =   $IMAGE69$Е (f > rk) Е (g < rk),

откуда и следует лемма.

Теорема 1.  Пусть f(х) и g(х) суть конечные измеримые функции, заданные на множестве Е. Тогда измерима каждая из функций 1) f(х) – g(х),  2) f(х) + g (х),  3) f(х) . g(х), и если g(х) ¹ 0, то измерима также функция 4) $IMAGE70$ $IMAGE71$.

Д о к а з а т е л ь с т в о.  1) Функция а + g(х) измерима при любом а. Значит (на основании леммы), множество Е (f > а+g ), а так как E(f-g>a)=E(f>a+g), то измерима функция f (х) – g(х).

2) Измеримость суммы f(х) + g(х) следует из того, что

f(х) + g(х) = f(х) – [ - g (х)].

3) Измеримость произведения f(x) .g(x) вытекает из тождества

f(x) .g(x)= $IMAGE72${[f(x)+g(x)] $IMAGE73$-[f(x)-g(x)] $IMAGE73$}

и теоремы 7

4) Наконец, измеримость частного $IMAGE70$ есть следствие тождества

$IMAGE70$=f(x) · $IMAGE77$.

Эта теорема показывает, что действия арифметики, будучи применены к измеримым функциям, не выводят нас за пределы этого класса функций. Следующая теорема устанавливает сходный результат относительно уже не арифметической операции – предельного перехода.

Теорема 2. Пусть на множестве Е задана последовательность измеримых функций f1(x), f2(x), … Если в каждой точке х $IMAGE78$Е существует (конечный или бесконечный) предел

F(x)= $IMAGE79$fn(x),

то функция F(х) измерима.

Д о к а з а т е л ь с т в о. Фиксируем произвольные  а  и введем в рассмотрение множества

$IMAGE80$А $IMAGE81$=Е(f $IMAGE82$> a + $IMAGE83$),       В $IMAGE84$= $IMAGE85$.

Эти множества, очевидно, измеримы, и для доказательства теоремы достаточно проверить, что

E(F>a) = $IMAGE86$.

Займемся же проверкой этого тождества.

Пусть х $IMAGE87$ $IMAGE78$Е (F>a), тогда F (x0) > a, и найдется такое натуральное m, что F(x0) > a + 1/m. Поскольку же fk (x) $IMAGE89$ F (x0), то найдется такое n, что при k $IMAGE90$n будет

fk(x0) > a + $IMAGE83$.

Иначе говоря, х0 $IMAGE78$ А $IMAGE81$ при всех k $IMAGE90$n, а тогда х0 $IMAGE78$ В $IMAGE96$ и тем более х0 $IMAGE78$ $IMAGE98$. Отсюда следует, что Е (F > a) $IMAGE99$.

Теперь остается установить обратное включение

$IMAGE100$ $IMAGE101$ E (F > a),

и теорема будет доказана.

 Пусть х0 $IMAGE102$ $IMAGE98$. Тогда х0 $IMAGE78$ В $IMAGE96$при некоторых фиксированных n и m. Это значит, что х0 $IMAGE78$ А $IMAGE81$ для k $IMAGE90$n. Иначе говоря для k $IMAGE90$n будет fk(x0) > a+1/m.

Устремляя k к бесконечности и переходя в последнем неравенстве к пределу, получим, что F(x0)>a, т.е. x0 ÎE (F>a). Этим и доказано включение (*). Доказанная теорема допускает следующее обобщение.

Теорема 3. Пусть на множестве E заданы измеримые функции f1(x), f2(x), … и некоторая функция F(x). Если соотношение

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 171 | Загрузок: 3 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Среда
08 Янв 2025
19:53


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz