Пятница, 20 Июн 2025, 15:16
Uchi.ucoz.ru
Меню сайта
Форма входа
Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51666


Онлайн всего: 4
Гостей: 4
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Функцiя, класифiкацiя функцiй


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
07 Апр 2013, 12:00

Абсолютна величина дiсного числа. Властивостi абсолютних величин.

Змiннi i сталi величини. Функцiя. Парнiсть, непарнiсть, перiодичнicть, моно-

тоннicть. Складна функцiя. Класифiкацiя функцiй. Перетворення графiкiв.

ПИТАННЯ.

1.Дiйснi числа.Абсолютна величина (модуль) дiйсного числа.Властивостi абсолютних величин.

2.Сталi i змiннi величини.Iнтервали S -окрестнiсть.

3.Означення функцiп ,область означення,множина значень функцiп.Способи завдання функцiп.Складна функцiя.

4.Парнiсть,непарнiсть функцiп.Зростаючи i спадаючи функцiп.Обмеженi функцiп. Периодичнi функцiп.

5.Класифiкацiя функцiй.

6.Перетворення грификiв.

ОЗНАЧЕННЯ.Абсолютною величиною (або модулем) дiйсного числа x (позначається |x|) називається невiд’ємне дiйсне число,задовольняюче умовам:

| Х, якщо Х>0

|X|= <-Х,якщо Х<0

| 0,якщо Х=0

Властивостi абсолютних величин.

1.Абсолютна величина алгебраїчної суми декiлькох дiйсних чисел на бiльше суми алгебраїчних величин доданкiв:

|х+y|Ј |х|+|у|

ДОВЕДЕННЯ.

Нехай х+уі 0,тодi |х+у|=х+уЈ |х|+|у| (поскiльки хЈ |х| i уЈ |у|)

Нехай х+у<0,тодi |х+у|= -(х+у)= -х+(-у)Ј |х|+|у| що i п.б.д.

Приведене доведення поширюється на будь-яке число доданкiв.

2.Абсолютна величина рiзницi не менш нiж рiзниця абсолютних величин зменьшуваного i вiд’ємника:

|х-у|і |х|-|у|, |х|>|у|

ДОВЕДЕННЯ:

Покладемо х-у=z,тодi х=у+z i по доведеному в пунктi 1

|х|=|у+z|Ј |у|+|z|=|у|+|х-у|

Звiдки |х|-|у|Ј |х-у| що i т.б.д.

Абсолютна величина добутку дорiвнює добутку абсолютних величин спiвмножникiв; |хуz|=|х|·|у|·|z|

Абсолютна величина частки дорiвнює частцi абсолютних величин дiленого i дiльника; |х/у|=|х|/|у|

Останнi двi властивостi Ю iз означення обсалютноп величини.

ЗМIННI I СТАЛI ВЕЛЕЧИНИ

Змiнною величиною називається величина, котра приймає рiзнi численнi значення. Величина, численнi значення якої не змiнюються називається сталою величиною.

Означення. Сукупнiсть всiх численних значень змiнної величини називається областю змiнювання цiєї змiнної.

Промiжком або iнтервалом називається сукупнiсть всiх чисел х, що мiстяться мiж даними числами а i в. Якщо промiжок замкнений, то його називають [ а,в] . Промiжок може бути напiвзамкненим ( а,в] . Замкнений промiжок носить назву вiдрiзка. Околом даної точки х0 називається довiльний iнтервал (а,в), що мiстить цю точку усереденi себе.

Значення змiнної величини можуть бути безперервними (iнтервал) або дискретними (точки).

ФУНКЦIЯ.

Означення 1. Якщо кожному значенню змiнної х, належащому деякiй областi вiдповiдає одне певне значення другої змiнної y, то y О функцiя вiд х, або в символiчному запису, y = f(x), y = j (x) i т.п. х – називається незалежною змiнною або аргументом.

Означення 2. Сукупнiсть значень х, для котрих визначається значення функцiї y в силу правила f(x), називається областю визначення функцiї (або областю iснування функцiї).

Iнодi поняття в означеннi функцiї допускають, що кожному значенню х, належному деюкiй областi, вiдповiдає, а декiлька значень y. В цьому випадку функцiю називають многозначною, на вiдмiну вiд означення ранiше функцiї, котру називають однозначною.

В подальшому ми будемо розглядати тiльки однозначнi функцiї.

ВЛАСТИВОСТI ФУНКЦII.

а) Монотоннiсть

Ф-я f(х) називається зростаючою,якщо для " 2-х точок х1 i х2 iз областi визначення f(х) таких ,що f(х),f(х)>f(х)

Ф-я f(х) називається сподаючою,якщо для " 2-х точок х1 і х2 із області визначення f(х) таких , що f(х1)< f(х2)

Зростаючі , сподаючі , незростаючі , несподаючі функції називається монотонними.

б) Парність

Функція f(х) називається парною, якщо для " х із області визначення функції f(-х)= f(х) .

Графік парної функції симетричний відносно осі OY.

Функція f(х) називається непарною, якщо для " х із області визначення функції f(-х)= -f(х) . Графік непарної функції симметричен відносно початку координат.

в) періодичність

Функція f(х) називається періодичною з періодом l, якщо для любих х із її області визначення справедливе рівняння f(х) = f(х ± l).

Прикладом періодичних функцій є тригонометрічні функції: sinx, cosx, tgx, ctgx.

Способи завдання функції:

Табличний Аналітичний Графічний За допогою функціональної шкали.

Складна функція.Неявно задана ф-я.

Якщо функція f відображає множину Е вЕ1,а функція F відображає множину Е1 в множину Е2 , то функцєію Z=F(f(х)) називають функцією від функції,або складною функцією,або суперпозицією f i F.

Можлива складна функція, в утворенні котрої беруть участь n функцій:

z= F1(F2(F3(…(Fn(x))…))).

Ми розглядали функції від однієї змінної. Але можно розглядати також функції двох трьох і взагалі n змінних.

Функція від однієї змінної може бути задана неявним засобом за допомогою рівності F(x,y)=0, (*)

де F – є функція від двох змінних x і y.

Таким чином, Е є множина всіх чисел х, кожному із котрих відповідає непуста множина У. Цим визначена на множені Е деяка функція У= (х) від х, взагалі кажучі багатозначна.

В такому випадку кажуть що функція j визначена неявно за допомогою рівності (*). Для неї, очевидно, виконується тотожність:

F(x, j (х))є 0

По аналогії можливо також визначити функцію х=y (у) від змінної У, визначену неявно за допомогою рівності (*). Для неї виконується тотожність:

F( (у),y)є 0.

Функцію х=y (у) називають зворотньою по відношенню до функції у=j (х).

Класифікація функцій.

Основними елемантарними функціями є:

степена; у=хa , де a - дійсне число; де a -дiйсне число;-Ґ <х<+Ґ ; a -цiле додатнє число (1-3)

2. a -цiле вiд’О мне чiсло (4)

3.a -дробно-рацiональнi числа (5,6)

2.показникова: у=ах ,де а-додатнє число ,(а№ 1);

3. логарифмiчна : у=logах , х>0.а№ 1, (а>0);

тригонометричниi функцiї; у=sinх, у=cosх, у=tgх, у=ctgх, у=secх, у=cosecх.Оберненi тригонометричнi функцiї

у=аrcsinх, у=arccosх, у=arctgх, у=arcctgх,

у=arcsecх, у=arccosecх.

Означення . Елементарною функцiєю називається функцiя, котра може бути задана формулою виду у=f(х), де праворуч стоїть вираз із основних елементарних функцій і сталих за допомогою кінцевого числа операцій додавання , віднімання, множення, ділення і взяття функції від функції.

Елементарні функції-це функції задані аналітично.

Алгебраїчні функції.

1.Ціла раціональна функція або многочлен у=а0хn+a1xn-1+…+an, a0,a1,…,an-сталі числа, котрі називаються кофіцієнтами, n-ціле невід’ємне число.

2.Дробно-раціональна функція

у=(a0xn+a1xn-1+a2xn-1+…+an)/(b0xm+b1xm-1+…+bm)

3.Ірраціональна функція

Якщо в правій частині формули у=f(x) проводяться операції додовання, віднімання, ділення і возведення в степень з раціональними нецілими показниками, то функція у від х називається ірраціональною.

Перетворення графіків.

Нехай маємо графік функції у=f(х).

1) у= - f(х)-симетричний відносно осі Ох.

2) у= ф f(х)ф -приймає тільки додатні значення.

Приклад

3) Графіки можуть складатись і відніматись

4) у=х+(1/х)

5) Множення і розтягнення від осі обсцис.

Щоб побудувати графік функції у=Мf(х),М>0,треба перейти до нових одиниць масштабу.Одиницю масштабу на осі Ох залишило незмінною, а за одиницю масштабу по осі Оу візьмемо добуток М на стару одиницю і побудуємо графік функції у=f(х) в нових одиницях масштабу

6) у=f(х+с), у=f(kx)

Графік функції х+с О Х отримуємо і графіка функції у=f(х) непосреднім переміщенням його переменною осі с Ох на к ск одиниць масштабу вліво, якщо C>0 (і вправо, якщо С<0)

Графік функції у=f(kx),k>0,(kx) О x отримуємо із графіка у=f(х) непосреднім розтягненням його в 1/k разів по напрямку осі Ох.

Перенесення графіка паралельно осі ординат g(x)=f(x)+a

Приклади: у=к хч +2х

у= -3cos(2x+(п/6))

у=х+sinx

7) Графічне рішення

8) Графічне рішення систем

х+у=2

х-2у=1

х=5/3, у=1/3.


***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 197 | Загрузок: 5 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Пятница
20 Июн 2025
15:16


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz