МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
Математический факультет
Кафедра алгебры и методики преподавания математики
Курсовая работа
СОДЕРЖАНИЕ
Ведение
1.Основные определения и теоремы
2.Смежные классы
2.1. Правые и левые смежные классы
2.2 Двойные смежные классы
3. Нормальные подгруппы и фактор-группы
3.1 Нормальные подгруппы
3.2 Фактор-группы
Заключение
Список использованных источников
ВВЕДЕНИЕ
Первый значительный вклад в теорию групп внес Эварист Галуа (1811–1832) при исследовании вопроса о разрешимости в радикалах алгебраических уравнений. Именно Галуа впервые ввел понятие группы и попытался выяснить, как они устроены. До него группы в виде подстановок корней уравнения возникли также в работах Лагранжа (1771), Роффини (1799) и Абеля (1825).
В 1830–1832 годах Галуа пришел к понятиям нормальной подгруппы, разрешимой группы, простой группы. С тех пор многие ученые математики занимались исследованиями в вопросах связанными с группами, вводили новые понятия, строили свои догадки, формулировали и доказывали теоремы.
Теория групп – один из центральных разделов современной алгебры, в настоящее время активно разрабатываемый в Беларуси в научных школах Минска, Гомеля, Витебска, Новополоцка, Мозыря.
Понятие группы приобретает в настоящее время все большее господство над самыми различными разделами математики и ее приложений и наряду с понятием функции относится к самым фундаментальным понятиям всей математики.
Понятие группы не труднее понятия функции; его можно освоить на самых первых ступенях математического образования, тем более что сделать это можно на материале элементарной математики. Вместе с тем знакомство с этой теорией кажется одним из самых естественных способов ознакомления с современной математикой вообще.
Моя цель состоит в том, чтобы разобраться с начальными понятиями, связанными с группами: фактор-группы, смежные классы, доказать наиболее важные теоремы, следствия, выделить некоторые свойства.
1.ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ТЕОРЕМЫ
Рассмотрим некоторое непустое множество G, на котором определена бинарная алгебраическая операция.
ОПРЕДЕЛЕНИЕ 1.1. Пара (G,*) называется группой, если:
1) операция ассоциативна, т.е. для любых a, b, c ÎG выполняется
a*(b*c)=(a*b)*c;
2) в G существует нейтральный элемент относительно, т.е. для любого a Î G найдется такой элемент e ,что выполняется
a*e=e*a=a
3) для любого элемента G существует симметричный элемент относительно, т.е. для любых a, bÎ G выполняется
a*b=b*a=e;
ОПРЕДЕЛЕНИЕ 1.2. Подмножество H группы G называется подгруппой, если H-группа относительно той же операции, которая определена на G.
ОПРЕДЕЛЕНИЕ 1.3. Зафиксируем в группе G элемент a. Пересечение всех подгрупп группы G, содержащих элемент а, называется циклической подгруппой, порожденной элементом а, и обозначается áаñ.
ОПРЕДЕЛЕНИЕ 1.4. Если G совпадает с одной из своих циклических подгрупп, то G называют циклической группой.
ТЕОРЕМА 1.1. Пусть элемент аÎG имеет конечный порядок k.
Тогда
áаñ ={e, a, a
, … , a
}
Кроме того, а
= e в точности тогда, когда k делит m.
ТЕОРЕМА 1.2. Все подгруппы бесконечной циклической группы G = áаñ исчерпываются единичной подгруппой E={e} и бесконечными подгруппами á а
ñ для каждого натурального m.
ТЕОРЕМА 1.3.Все подгруппы конечной циклической группы áаñ порядка n исчерпываются циклическими подгруппами á а
ñ порядка n/m для каждого натурального m, делящего n.
ТЕОРЕМА 1.4. Непустое подмножество H группы G будет подгруппой тогда и только тогда, когда h $IMAGE6$h $IMAGE7$ $IMAGE8$H и h $IMAGE9$ $IMAGE8$H.
2. СМЕЖНЫЕ КЛАССЫ
2.1 Правые и левые смежные классы
Пусть G – группа, H – ее подгруппа и gÎG.
ОПРЕДЕЛЕНИЕ 2.1.1. Правым смежным классом группы G по подгруппе H называется множество Hg= {hg | hÎH} всех элементов группы G вида hg , где h “пробегает” все элементы подгруппы H.
Аналогично определяется левый смежный класс gH={gh | hÎH}.
ЛЕММА 2.1.1. Пусть G – группа, H – подгруппа. Тогда справедливы утверждения:
1) H=He;
2) gÎHg для каждого gÎG;
3) если a Î H, то Ha=H; если bÎ Ha , то Hb=Ha;
4) Ha=Hb тогда и только тогда, когда ab $IMAGE11$ÎH;
5) два смежных класса либо совпадают, либо их пересечение пусто;
6) если H – конечная подгруппа, то | Hg | = | H | для всех gÎG.
Доказательство
Первые три свойства вытекают из определения правого смежного класса
(4) Если Ha = Hb, то ea = hb, hÎH и ab $IMAGE11$= hÎH. Обратно, если ab $IMAGE11$ÎH, то aÎHb и Ha=Hb по утверждению 3.
(5) Пусть Ha Ç Hb ≠Æ и c Î Ha Ç Hb. Тогда c= $IMAGE14$a= $IMAGE15$b и ab $IMAGE11$= $IMAGE17$ÎH. Теперь Ha=Hb по утверждению 4).
(6) Для каждого gÎG отображение φ: h→hg есть биекция множеств H и Hg. Поэтому | H | = | Hg |
Ч.т.д.
Из свойств 2) и 5) следует, что каждый элемент группы G содержится точно в одном правом смежном классе по подгруппе H. Это свойство позволяет ввести следующее определение.
ОПРЕДЕЛЕНИЕ 2.1.2. Пусть H подгруппа группы G. Подмножество T элементов группы G называется правой трансверсалью подгруппы H в группе G , если T содержит точно один элемент из каждого правого смежного класса группы G по подгруппе H .Итак, если T = { $IMAGE18$ | aÎI} –правая трансверсаль подгруппы H в группе G, то G = $IMAGE19$, H $IMAGE20$Æ при $IMAGE21$.
Таким образом, справедлива теорема.
ТЕОРЕМА 2.1.1. Если H – подгруппа группы G, то G является подгруппой непересекающихся правых смежных классов по подгруппе H.
Если G – конечная группа, то число различных правых смежных классов по подгруппе H также будет конечно, оно называется индексом подгруппы H в группе G и обозначается через |G : H|. Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в правой трансверсали T подгруппы H, т.е.
|G : H|=|T|=|G|/|H|
ТЕОРЕМА 2.1.2. (Лагранжа) Если H-подгруппа конечной группы G, то | G | = | H || G : H |. В частности, порядок конечной группы делится на порядок каждой своей подгруппы.
Доказательство.
Пусть индекс H в группе G равен n . По теореме 2.1.1. имеем разложение
G=Hg $IMAGE6$ $IMAGE23$Hg $IMAGE7$ $IMAGE25$Hg $IMAGE26$, Hg $IMAGE27$Hg $IMAGE28$Æ при i ≠ j.
Так как
| Hg $IMAGE29$| = |H| для всех i, то | G | = | H || G : H |
СЛЕДСТВИЕ 2.1.1. Порядок каждого элемента конечной группы делит порядок всей группы.
Доказательство
Порядок элемента a совпадает с порядком циклической подгруппы áаñ, порожденный этим элементом, см. теорему 1.1. Поэтому, | á аñ | = | a | делит | G |.
Аналогично определяется левая трансверсаль подгруппы H в группе G. Если L={ l $IMAGE30$ | aÎ J } – левая трансверсаль подгруппы H в группе G, то
G= $IMAGE31$l $IMAGE32$H, l $IMAGE32$H Ç l $IMAGE34$H=Æ при $IMAGE35$.
Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в левой трансверсали L подгруппы H, т.е. | G : H |=| L |. Для левой трансверсали справедлив аналог теоремы 2.1.1 .Поэтому из теоремы Лагранжа имеем
СЛЕДСТВИЕ 2.1.2. Число левых и число правых смежных классов конечной группы G по подгруппе H совпадают.
ТЕОРЕМА 2.1.3. В группе простого порядка нет неотрицательных подгрупп. В частности, группа простого порядка циклическая.
Доказательство.
Пусть G – конечная группа простого порядка p. Если H – подгруппа группы G, то по теореме Лагранжа | H | делит | G |. Поэтому либо | H |=1 и H – единичная подгруппа, либо | H |= p и H совпадает с группой G. Выберем неединичный элемент а в группе G и рассмотрим циклическую подгруппу áаñ, порожденную этим элементом. Так как a ≠ e ,то á аñ ≠ E, поэтому áаñ = G и G – циклическая группа.
ТЕОРЕМА 2.1.4. Пусть H ≤ K ≤ G и G – конечная группа. Если T – правая трансверсаль подгруппы H в группе K, а S – правая трансверсаль подгруппы K в группе G, то TS – правая трансверсаль подгруппы H в группе G. В частности, | G : H | = | G : K || K : H |.
Доказательство
Пусть
T={t $IMAGE6$, … ,t $IMAGE37$}, S={s $IMAGE6$, … , s $IMAGE26$}
Тогда
K=Ht $IMAGE6$ $IMAGE41$. . . $IMAGE41$Ht $IMAGE37$, Ht $IMAGE27$Ht $IMAGE28$Æ, i ≠j;
G=Ks $IMAGE6$ $IMAGE41$. . . $IMAGE41$Ks $IMAGE26$, Ks $IMAGE27$Ks $IMAGE28$Æ, i ≠j.
Теперь
G =( Ht $IMAGE6$ $IMAGE41$. . . $IMAGE41$Ht $IMAGE37$)s $IMAGE6$ $IMAGE41$. . . $IMAGE41$ ( Ht $IMAGE6$ $IMAGE41$. . . $IMAGE41$ Ht $IMAGE37$)s $IMAGE26$. (2.1.1)
Предположим, что Ht $IMAGE64$s $IMAGE65$Ht $IMAGE66$s $IMAGE67$ для некоторых натуральных a,b,c и d. Тогда
t $IMAGE64$s $IMAGE69$(t $IMAGE66$s $IMAGE67$) $IMAGE72$ = t $IMAGE64$s $IMAGE69$s $IMAGE75$t $IMAGE76$ÎH ≤ K,
поэтому
s $IMAGE69$s $IMAGE75$Î t $IMAGE79$Kt $IMAGE66$ = K, K s $IMAGE69$=Ks $IMAGE67$
Но s $IMAGE69$ и s $IMAGE67$– элементы из правой трансверсали подгруппы K в группе G, поэтому s $IMAGE69$= s $IMAGE67$ и b = d. Теперь
t $IMAGE87$s $IMAGE69$(t $IMAGE66$s $IMAGE67$) $IMAGE72$ = t $IMAGE64$t $IMAGE93$ÎH, H t $IMAGE64$=Ht $IMAGE95$
и a = c. Таким образом, формула (2.1.1.) является разложением группы G по подгруппе H и TS – правая трансверсаль подгруппы H в группе G. Так как индекс подгруппы совпадает с числом элементов в правой трансверсали этой подгруппы, то
|G : H |=| TS |=| T | | S |=| K : H || G : K |
Отметим, что теорема Лагранжа вытекает из теоремы 2.1.4. при H=E.
2.3. Двойные смежные классы
Пусть H и K – подгруппы группы G и g Î G. Множество
HgK ={ hgk | h Î H, k Î K}
называется двойным смежным классом группы G по подгруппам H и K
ЛЕММА 2.3.1. Пусть H и K –подгруппы группы G. Тогда справедливы следующие утверждения:
1) Каждый элемент gÎ G содержится в единственном двойном смежном классе HgK;
2) Два двойных смежных класса по H и K либо совпадают, либо их пересечение пусто;
3) Группа G есть объединение непересекающихся двойных смежных классов по подгруппам H и K;
4) Каждый двойной смежный класс по H и K есть объединение правых смежных классов по H и левых смежных классов по K;
5) Если группа G конечна, то двойной смежный класс HgK содержит
| K: H $IMAGE96$ $IMAGE97$ K | правых смежных классов по H и | H : H $IMAGE97$K $IMAGE99$| левых смежных классов по К.
Доказательство.
(1)Так как каждая подгруппа содержит единичный элемент, то
g=ege Î HgK
Допустим, что gÎHxK. Тогда g=hxk для некоторых hÎH, kÎK и
HgK=H(hxk)K=HxK.
(2) и (3) следуют из (1)
(4)Так как
HgK= $IMAGE100$ = $IMAGE101$,
то утверждение (4) доказано.
Подсчитаем число правых смежных классов в разложении HgK= $IMAGE100$ по подгруппе H. Допустим, что Hgk $IMAGE6$=Hgk $IMAGE104$. Тогда
Hg k $IMAGE6$k $IMAGE106$ = Hg и k $IMAGE6$k $IMAGE106$ Î g $IMAGE109$Hg $IMAGE110$K=H $IMAGE96$ $IMAGE110$K
Справедливо и обратное, т.е. если k $IMAGE6$k $IMAGE106$Î H $IMAGE96$ $IMAGE110$K, то
k $IMAGE6$k $IMAGE106$Î g $IMAGE109$Hg, g k $IMAGE6$k $IMAGE106$ÎHg, g k $IMAGE6$ÎHgk $IMAGE7$
и Hg k $IMAGE6$= Hgk $IMAGE7$. Поэтому, в двойном смежном классе HgK правых смежных классов по H столько, сколько их в группе K по подгруппе H $IMAGE96$ $IMAGE110$K.
Аналогично,
Hgk= $IMAGE101$ и h $IMAGE6$gK=h $IMAGE130$gK
тогда и только тогда, когда h $IMAGE131$h $IMAGE7$ÎH $IMAGE97$K $IMAGE99$. Поэтому, в произведении HgK левых смежных классов по K будет точно столько, каков индекс
|H : H $IMAGE110$ $IMAGE110$K $IMAGE99$|
Произведение подгрупп. При g = e двойной смежный класс HgK=HK={hk | hÎH , kÎK} превращается в произведение подгрупп H и K . В общем случае HK не является подгруппой.
Пример:
Найдем разложение симметрической группы S $IMAGE138$ в левые смежные классы по подгруппе $IMAGE139$.
Для этого найдем все левые смежные классы группы
S $IMAGE138$={Î,(12),(13),(23),(123),(132)} по подгруппе H= $IMAGE141$={Î,(12)}
ÎH = Î{Î, (12)} = {Î, (12)} = H,
(12)H = (12) {Î, (12)} = {(12), Î} = H,
(13)H = (13) {Î, (12)} = {(13), (123)},
(23)H = (23) {Î, (12)} = {(23), (132)},
(123)H = (123){Î,(12)} = {(123),(13)} = (13)H,
(132)H = (132){Î,(12)} = {(132),(23)} = (23)
Искомое разложение принимает вид
S $IMAGE138$=ÎH $IMAGE23$(13) H $IMAGE23$(23) H.
3. НОРМАЛЬ