Четверг, 26 Июн 2025, 03:35
Uchi.ucoz.ru
Меню сайта
Форма входа
Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51666


Онлайн всего: 5
Гостей: 5
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Элементы общей топологии


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
12 Апр 2013, 09:42

Курсовая работа

на тему: «Элементы общей топологии»


Введение

Топология – одна из самых молодых ветвей геометрии. Топология является одним из самых абстрактных разделов современной математики. Примерно за сто лет её существования в ней достигнуты результаты, важные для многих разделов математики.

Топология (от греческого «τοποξ» – место, окрестность, «λογοξ» – закон) – раздел математики, изучающий идеи непрерывности. В топологии впервые даются строгие определения таких фундаментальных понятий геометрии, как линия и поверхность. Предметом топологии являются свойства фигур, сохраняющиеся при гомеоморфизмах, то есть взаимно однозначных и непрерывных в обе стороны отображениях. Топология, как наука возникла из потребностей связанных с математическим анализом. Эта наука, хотя и считается молодой, на самом деле известна уже давно, именно благодаря тесным связям с математическим анализом. Идеи топологии идут от работ таких крупных математиков 19 в. как Риммман, Пуанкаре, Кантор, Эйлер. Развитие топологии идёт бурными темпами и в большом числе направлений, этот процесс не окончен в настоящее время, хотя ряд крупных проблем, стоящих перед топологией, успешно решен. Топологические методы стали мощным инструментом математического исследования. Топологический подход позволяет упростить многие доказательства фундаментальных теорем классической математики и обобщить эти теоремы на более широкие классы пространств.

Геометрия школьного курса имеет дело в основном со свойствами фигур, связанными с понятиями длины, площади, объема-то есть метрическими свойствами фигур. Лишь очень немногие теоремы и задачи школьного курса геометрии рассматривают свойства иного характера. Топология как раз и является разделом геометрии, изучающим свойства фигур, которые могут быть установлены без измерения и сравнения величин, но при этом имеющие геометрический смысл.

Целью первой главы курсовой работы было рассмотреть основные элементы общей топологии.

Задачи:

· дать определение топологического пространства;

· рассмотреть свойства топологических пространств;

· охарактеризовать топологические преобразования.

Во второй главе работы мы попытались рассмотреть топологические свойства поверхностей. Были поставлены следующие задачи:

· дать определение двумерного многообразия;

· рассмотреть эйлерову характеристику поверхности;

· охарактеризовать ориентируемые и неориентируемые поверхности.


1. Элементы общей топологии

1.1 Понятие топологического пространства

1.1.1 Понятие метрического пространства

Определение 1. Декартово произведение множеств А и В определяется как множество всех упорядоченных пар (х, у), где хÎА, уÎВ, то есть

А´В = {(х, у)| хÎА, уÎВ}.

В частности, возможно А = В.

Определение 2. Говорят, что в множестве Х задана метрика r, если определено отображение

r: Х ´ Х ® R,

удовлетворяющее следующим аксиомам:

1. " х, у Î Х { r (х, у) ³ 0}, причем r (х, у) = 0 Û х = у.

2. " х, у Î Х { r (х, у) = r (у, х)}.

3. " х, у, z Î Х {r (х, у) + r (у, z) ³ r (х, z)}.

Условия 1, 2, 3 называются аксиомами метрики, при этом условие 2 называется аксиомой симметрии, а 3 – аксиомой треугольника.

Определение 3. Множество Х с заданной на нем метрикой r называется метрическим пространством и обозначается (Х, r).

В тех случаях, когда ясно, о какой метрике идет речь, метрическое пространство (Х,r) обозначают просто Х.

Число r(х, у) называют расстоянием между точками х и у в пространстве Х.


1.1.2 Примеры метрических пространств

Пример 1. Определим для элементов произвольного непустого множества Х расстояние следующим образом:

r(х, у) = .

Очевидно, аксиомы 1 – 3 выполняются, а, следовательно, (Х, r) – метрическое пространство.

Пример 2. Множество действительных чисел R с расстоянием

r(х, у) = (у – х)2 не является метрическим пространством.

Действительно не выполняется третья аксиома. Например, для трех точек 2, 3 и 4 получим:

r(2, 3) = (3 – 2)2 = 1, r(3, 4) = (4 – 3)2 = 1,

r(2, 4) = (4 – 2)2 = 4 и r(2, 3) + r(3, 4) < r(2, 4).

Определение 1. Пусть (Х, r) – метрическое пространство, х0 Î Х,

r > 0 – действительное число. Назовём открытым шаром с центром в точке х0 и радиусом r множество

U (x0, r) = {x | x Î X, r (x, x0) < r }.

Определение 2. Подмножество G Ì Х будем называть открытым в

(Х, r), если любая его точка является центром некоторого открытого шара, содержащегося в G.

Пустое множество Æ также считаем открытым множеством.

Определение 3. Окрестностью точки А метрического пространства будем называть любое открытое множество, содержащее эту точку.

Обозначим совокупность всех открытых множеств в (Х, r) просто Фr.

Тогда имеет место следующая теорема.

Теорема. 1) Объединение любой совокупности {Ga} множеств из Фr принадлежит Фr.

G  Î Фr.

2) Пересечение любых двух множеств G1 и G2 из Фr принадлежит Фr.

G1 ÇG2 Î Фr.

3) Метрическое пространство Х – открытое множество, то есть

Х Î Фr, Æ Î Фr.

Доказательство. 1) Пусть . Обозначим

G = $IMAGE6$.

Возьмём произвольную точку х0 Î G. Тогда существует такое a0, что х0 Î $IMAGE7$, и так как $IMAGE7$Î Фr, то найдётся число r0, что

U (х0, r0) Ì $IMAGE6$.

Так как G 0 Ì G, то U (х0, r0) Ì G.

Итак, G – открытое множество.

2) Пусть G = G1 Ç G2, где G1, G2 Î Фr и G $IMAGE11$ Æ.

Если х0 Î G, то х0 Î G1 и х0 Î G2.

Тогда существуют такие радиусы r1 и r2, что


U(х0, r1) Ì G1, U(х0, r2) Ì G2.

Обозначим r = min {r1, r2}, тогда

U (х0, r) Ì G1 Ç G2 = G.

Итак, G – открытое множество.

3. Так как всегда можно представить

Х = $IMAGE12$,

где Ua – открытый шар радиуса r, с центром в точке , объединение рассматривается по всем точкам пространства, то в силу 1 получим, что пространство Х – открыто. Пустое множество мы предполагаем всегда открытым.

В дальнейшем описанное нами семейство Фr всех открытых множеств в метрическом пространстве (Х, r) будем называть топологией, индуцированной метрикой r в Х..

1.1.3 Определение и примеры топологических пространств

Многие понятия теории метрических пространств (предел, предельная точка, точка прикосновения, замыкание множества, граница множества, непрерывность и т.д.) вводятся, опираясь на понятие окрестности или, что тоже самое, на понятие открытого множества. Понятие окрестность и открытое множество определяются с помощью метрики.

Свойства открытых множеств метрического пространства принимаются в качестве аксиом. Этот путь приводит нас к топологическим пространствам, по отношению к которым метрические пространства представляют собой частный случай.

Определение 1. Пусть Х – непустое множество элементов произвольной природы, Ф = { $IMAGE6$} – семейство подмножеств множества Х, удовлетворяющее следующим аксиомам:

1. Само множество Х и пустое множество Æ принадлежат семейству Ф.

2. Объединение любого семейства множеств из Ф также принадлежит Ф.

3. Пересечение любых двух множеств из Ф также принадлежит Ф.

Тогда семейство Ф называется топологией или топологической структурой.

Пара (Х, Ф) или, другим словами, множество Х, в котором задана некоторая топология, называется топологическим пространством.

Элементы множества Х называются точками топологического пространства, элементы семейства Ф называются открытыми множествами в (Х, Ф).

Когда не может возникнуть недоразумений, разрешается просто писать: Х – топологическое пространство, G  – открытое множество, то есть не указывать постоянно связь с топологией Ф.

Примеры топологических пространств.

Пример 1. Х – произвольное множество. Из аксиомы 1 топологического пространства вытекает, что среди открытых множеств любой топологической структуры в Х обязательно должны быть пустое множество Æ и само множество Х. Очевидно, что для семейства

Фт = {Æ, X},

которое состоит лишь из этих двух множеств, выполняются также и аксиомы 2 и 3.

Поэтому Фт = {Æ, X} является простейшей топологической структурой в Х. Эта топология называется тривиальной, а пара (Х, Ф) тривиальным топологическим пространством. Иногда эту пару называют антидискретным топологическим пространством.

Пример 2. Другой крайностью является так называемое дискретное топологическое пространство (Х, Фd), где Фd представляет собой семейство всех подмножеств множества Х. Очевидно, что и в этом случае все аксиомы 1 – 3 выполняются.

Пример 3. Пусть Х = R3. Открытыми в Х множествами назовем только открытые шары U(r) с общим центром О и радиусом r, а также всё множество Х и пустое множество.

Очевидно, аксиома 1 выполняется.

Пусть {U(ra)} – любая система открытых множеств. Тогда их объединением будет шар с центром О и радиусом r = $IMAGE16$.

Если $IMAGE16$ = ¥, то U(r) = X.

Следовательно, аксиома 2 выполняется.

Пересечением двух множеств U(r1) и U(r2) будет множество U(r), где r = $IMAGE18$, то есть аксиома 3 также выполняется.

Выделенное нами семейство открытых множеств является топологией в R3, которую иногда называют концентрической.

Определение 2. Пусть в множестве Х введены две топологии Ф1 и Ф2. Говорят, что Ф1 сильнее Ф2 (или Ф2 слабее Ф1), если Ф2 Ì Ф1, то есть любое множество из Ф2 принадлежит Ф1.

Очевидно, самой сильной топологией является дискретная топология, а самой слабой – тривиальная.

А вообще – две топологии на одном и том же множестве могут быть несравнимыми.

Пример.

Х = $IMAGE19$,

Ф1 = {Æ, Х, $IMAGE20$},

Ф2 = {Æ, Х, $IMAGE21$}.

Топологии Ф1 и Ф2 несравнимы.

Теорема 1. Пересечение произвольного множества топологий, заданных на Х, является топологией в Х. Эта топология Ф слабее любой из данных топологий Ф .

Доказательство. Пусть $IMAGE23$.

Так как для любого a

{Х, Æ} Ì Ф ,

то

{X, Æ} Ì Ф.

Далее, из того, что каждое Ф  замкнуто относительно взятия любых объединений и конечных пересечений, следует, что этим свойством обладает и множество $IMAGE23$.

Теорема 2. Пусть А – произвольная система подмножеств множества Х. Тогда существует минимальная топология в Х, содержащая А.

Действительно, всегда существуют топологии, содержащие А, например, дискретная. Пересечение всех топологий, содержащих А и есть искомая топология. Эта минимальная топология называется топологией, порождённой системой А.

1.2 Свойства топологических пространств

1.2.1 Понятие подпространства

Если У подмножество Х, а (Х, Ф) – топологическое пространство, то на У можно рассматривать топологию


y = { $IMAGE6$Ç У | G  Î Ф }.

Действительно, обозначим:

S  = $IMAGE6$Ç У, y = { S }.

1. $IMAGE32$ Þ Æ, У Î Y.

2.  S  = (G $IMAGE36$Ç У) = ( G )Ç У Î y.

3. S  Ç S $IMAGE40$ = (G Ç У) Ç (G $IMAGE40$Ç У) = (G ÇG $IMAGE40$) Ç У Î y.

(У, y) – называют топологическим подпространством пространства (Х, Ф), а y – топологией, индуцированной топологией Ф.

Пример. Пусть Х = Е3. Открытыми в Х множествами назовем только открытые шары U(r) с общим центром О и радиусами r, а также все множество Х и пустое множество. Известно, что набор

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 253 | Загрузок: 4 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
26 Июн 2025
03:35


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz