Пятница, 31 Янв 2025, 02:55
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 23
Гостей: 23
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Элементарное доказательство великой теоремы Ферма


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
12 Апр 2013, 23:07

Нижегородский государственный технический университет им. Р.Е. Алексеева

ЭЛЕМЕНТАРНОЕ ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

(Приведенный ниже вариант доказательства Великой теоремы Ферма получен в октябре 2010 года)

С.А. ЛАБУТИН (д.т.н.)


1. Введение [1]. Великая (большая или последняя) теорема Ферма утверждает, что не существует отличных от нуля целых чисел x, y, z, для которых имеет место равенство

xn + yn = zn, (1)

где n > 2. Общеизвестно, что при n = 2 такие числа существуют (например, 3, 4 и 5).

В бумагах Ферма (который жил в 1601-1665 гг.) было найдено доказательство этой теоремы при n = 4 (это единственное полное доказательство теоретико-числового результата, сохранившееся от Ферма). Относительно же общего случая любого n > 2 Ферма лишь написал (на полях "Арифметики" Диофанта), что он нашел "поистине замечательное доказательство" этого факта, но "поля слишком малы, чтобы его уместить".

Несмотря на усилия многих математиков (в "Истории теории чисел" Диксона прореферировано более трехсот (!) работ на эту тему), это доказательство найдено не было, что даже вызвало сомнение в том, что в доказательстве Ферма не содержалось какой-либо ошибки. Тем более, что кроме показателя n = 4, нет ни одного показателя, для которого теорему Ферма удалось бы доказать элементарными средствами.

Известно [1], что для доказательства теоремы Ферма достаточно рассмотреть только случаи показателей n = 4 (для этого случая доказательство теоремы получено Пьером Ферма) и n = q ≥ 3, где q - простое число, делящееся без остатка только на единицу и на само себя, и примитивных решений x, y, z. Решение называется примитивным, если состоит из попарно взаимно простых чисел, т.е. каждая из пар чисел (x, y), (y, z) и (x, z) не имеет общих множителей кроме единицы.

Только создание в середине 19 века нового достаточно сложного раздела математики "теории алгебраических чисел" (первооткрывателем этого направления математики является немецкий математик Куммер) позволило доказать теорему Ферма для простых показателей q < 253747889 [1] в случае, когда ни одно из взаимно попарно простых чисел x, y, z не делится на q (опираясь на результаты, полученные рядом ученых к 1941 г., и на возможности ЭВМ для проверки сформулированных ими условий), и для q < 100000 для произвольных взаимно попарно простых решений x, y, z (опираясь на результаты Вандивера, полученные в 1929 г., и на возможности ЭВМ, для проверки сформулированных им условий). Но теория алгебраических чисел так и не позволила доказать теорему Ферма для всех простых чисел q > 2.

В докладе рассматривается доказательство теоремы Ферма для всех n = q ³ 3, где q является нечетным (не обязательно простым!) числом, на основе тех методов, которыми мог пользоваться Ферма в 17 веке. Хотя это доказательство и не открывает каких-либо новых путей в математике, но все-таки позволяет ликвидировать неприятную ситуацию, возникшую после появления теоремы Ферма, когда в течение 340 лет (!) математики всего человечества не смогли доказать эту теорему элементарными методами (и вообще не смогли пока доказать эту теорему!), и даже заявляли, что в доказательстве Ферма, вероятно, содержалась какая-то ошибка, не замеченная Ферма (хотя известно, что во всех случаях, когда Ферма писал, что получил доказательство какого-либо математического утверждения, то все эти доказательства в дальнейшем были найдены другими учеными кроме доказательства … Великой теоремы Ферма!).

Пьер Ферма в свободное от основной работы время (он работал в отделе прошений кассационной палаты суда французского города Тулуза) без каких-либо особых усилий (вполне возможно, что в течение всего одного вечера) доказывает рассматриваемую теорему, затем восхищается, вероятно, тем, что доказательство получено сразу для всех n > 2, но вовсе не считает необходимым сохранить это доказательство для других ученых или сообщить его в письмах к этим ученым (другими словами, вовсе не считает это доказательство каким-то особым достижением).

2. Какие известные результаты использованы в рассматриваемом доказательстве? Заметим, что в "Арифметике" Диофанта рассматриваются, в частности, целочисленные решение уравнения Пифагора

x2 + y2 = z2. (2)

Общие формулы для целочисленных решений этого уравнения были известны еще древним индусам и используются Ферма при доказательстве теоремы (1) для случая n = 4.

Запишем эти формулы для решения уравнения Пифагора в виде взаимно простых чисел x, y, z.

Леммы 1. Для любых взаимно простых положительных чисел m и n < m разной четности формулы

x = 2mn, y = m2 - n2, z = m2 + n2 (3)

доставляют состоящее из положительных целых чисел примитивное решение уравнения (2) с четным значением х. Обратно, любое состоящее из положительных чисел примитивное решение (x, y, z) уравнения (2), для которого х четно, выражается формулами (3), где m и n < m - взаимно простые числа разной четности.

Заметим, что в уравнении (2) не может быть четным число z и нечетными числа x и y, так как сумма квадратов любых двух нечетных чисел имеет вид (x2 + y2) = (4k + 2), где k - некоторое целое число, а каждый квадрат числа z2 имеет вид (4k) при четном z или (4k + 1) при нечетном z [1].

Кроме того, для доказательства теоремы Ферма потребуется лемма 2.

Лемма 2. Пусть a, b и с - такие натуральные (целые положительные) числа, что

1) имеет место равенство ab = cn;

2) числа a и b взаимно просты.

Тогда существуют такие натуральные числа x и y, что а = хn, b = yn.

Короче говоря, если произведение двух взаимно простых натуральных чисел является n-ой степенью, то каждый из сомножителей также будет n-ой степенью. Доказательство этой леммы приведено в книге [1] и является настолько простым, что для математика такого уровня как Ферма является самоочевидным.

Кроме того, нетрудно показать, что для полного доказательства теоремы Ферма достаточно доказать ее только для случая простых чисел n = q ³ 3 и для n = 4 и примитивных решений x, y, z. Доказательство этого утверждения содержится в [1], является очень простым и, вне всякого сомнения, было известно Ферма.

Поскольку для случая n = 4 теорема (1) была доказана еще Ферма (это доказательство в книге [1] занимает две страницы!), то ниже рассматривается только случай теоремы Ферма для n = q ³ 3, где q - нечетное число (для рассматриваемого ниже доказательства не потребовалось вводить более жесткое условие, чтобы q являлось простым числом) с примитивными решениями x, y, z.

3. Преобразование уравнения Ферма. Прежде чем переходить непосредственно к доказательству теоремы Ферма, выполним следующие преобразования уравнения (1) при n = q ³ 3, где q - нечетное число. В этом уравнении одно из чисел x, y или z является четным, а два других - нечетными.

А). Рассмотрим сначала случай, когда четным числом является число x или y. Без ограничения общности доказательства можно считать четным, например, число х. Запишем уравнение (1) в виде

хq = [ (z) q/2] 2 - [ (y) q/2] 2. (4)

Обозначим

хq = 2a, (z) q/2 + (y) q/2 = 2b и (z) q/2 - (y) q/2 = 2с.

Тогда правая часть уравнения (4) равняется (4bc), а левая часть (2а), т.е.

а = 2bc. (5)

Заметим далее, что имеют место также следующие соотношения:

b + c = (z) q/2, b - c = (y) q/2, (6)

(b + c) 2 = (z) q, (b - c) 2 = (y) q. (7)

Из уравнений (7) следует, что

(z) q + (y) q = (b + c) 2 + (b - c) 2 = (b2 + c2 + 2bc) + (b2 + c2 - 2bc) = 2 (b2 + c2) (8)

Предположим, что b2 и c2 не являются целыми числами. Запишем их в виде b2 = B + s и с2 = С + g, где B и C - целые части чисел b и c, а |s| < 1 и |g| < 1 - их дробные части. Тогда из уравнения (8) получаем

(z) q + (y) q = 2 (B + C + s + g). (9)

Так как левая часть уравнения (9) является целым четным числом, то (B + C + s + g) также должно быть целым числом и, следовательно, (s + g) должно равняться 0 или ±1, т.е. g = - s + ρ, где ρ может принимать значения 0 (при s = 0), +1 или - 1 (соответственно, при положительных или отрицательных значениях s).

Из уравнения (z) q/2 + (y) q/2 = 2b следует, что значение b > 1, так как z > y > 1. Но любое нецелое число b > 1 может быть двояким образом представлено в виде суммы целой и дробной части. Во-первых, такое число всегда можно записать в виде (В1 + s1) с положительным значением дробной части s1 > 1. Во-вторых, прибавляя и вычитая из этого выражения единицу получаем (В1 + 1 - 1 + s1) = (В + s), где В = В1 + 1 - это целая часть числа b, а s = (s1 - 1) - дробная часть числа b. Поскольку s1 < 1, то значение s < 0 при таком представлении числа b. При s = 0 можно считать, что s1 = 0 и В1 = В.

Сначала будем полагать, что число b представлено в виде b = (В + s) со значением s < 0. При этом, как отмечено выше, значение ρ = - 1.

Рассмотрим далее произведение

(zy) q = (b + c) 2 (b - c) 2 = b2 + c2 + 2bc) (b2 + c2 - 2bc) = (b2 + c2) 2-4b2c2. (10)

Учитывая, что b2 = B + s и с2 = С + ρ - s, преобразуем правую часть уравнения (10):

(zy) q = (B + С + ρ) 2 - 4 (В + s) (С + ρ - s) = (B + С + ρ) 2 - 4 В (С + ρ) + 4s (В - С - ρ) + 4s2

или

Е = (zy) q + 4В (С + ρ) - (B + С + ρ) 2 = 4sN + 4s2, (11)

где N = (В - С - ρ) > 0, так как В > С + ρ (это следует из второго уравнения (6) с учетом того, что любые целочисленные корни уравнения (1) должны быть больше q ≥ 3 [1]). Таким образом, для величины s получаем квадратичное уравнение

s2 + s (В - С - ρ) - 0,25Е = 0, (12)

где величина Е ≤ 0, так как правая часть уравнения (11) отрицательна при s < 0 (поскольку целое положительное число N > |s| и ρ = - 1) или равна нулю при s = 0.

Для положительного значения s1 = (1 + s) получаем также уравнение (12), но со значением ρ = 1 и (В - 1) вместо В, т.е.

(1 + s) 2 + (1 + s) (В - 1 - С - 1) - 0,25 [ (zy) q + 4 (В - 1) (С + 1) - (B - 1 + С + 1) 2]

или

s2 + 2s + 1 + s (В - С - 2) - 0,25 [ (zy) q + 4 (В - 1) (С + 1) - (B + С) 2] = 0. (13)

Вычтем из уравнения (13) уравнение (12) при ρ = - 1. В результате получим

s - [ (В - 1) (С + 1) - 0,25 (B + С) 2] + [В (С - 1) - 0,25 (B + С - 1) 2] + 1= 0

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 261 | Загрузок: 5 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Пятница
31 Янв 2025
02:55


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz