E.Л. Румянцев Вспоминается история человека, которому поручили продавать газированную воду на благотворительном базаре. Ему велели спрашивать: "С каким сиропом Вы желаете?" Когда покупатель пожелал воды без сиропа, то наш герой спросил: "Без какого сиропа? Без малинового или без вишневого?" Когда фокусник достает из совершенно пустой шляпы сначала живого кролика, затем цветы, а под конец начинает вытягивать бесконечную блестящую ленту, умные дети, конечно, восторженно аплодируют, но знают, что все это - чистейшей воды обман. Они прекрасно понимают, что из ничего нельзя достать что-то. Все эти кролики, цветы и ленты уже были где-то заранее припрятаны, а все "чудо" - в ловких руках фокусника. Ну, а теперь давайте посмотрим настоящее представление, которое дает подлинный маг и чародей - природа. Для начала подготовим сцену. Уберем все эти дома, леса и горы. Уберем Солнце, Землю и всякие там туманности. Затем займемся оставшимися молекулами, атомами и элементарными частицами. Заодно выкинем поля: электромагнитные, гравитационные, да и вообще все, какие нам попадутся. Вот теперь сцена подготовлена. То, что осталось - ну совершенно пустая шляпа - абсолютный физический вакуум. Теперь выход природы. В руках у нее две совершенно нейтральные плоские металлические пластинки, которые вдруг ни с того, ни с сего начинают притягиваться друг к другу. Учтите - это настоящий фокус! Мы ведь заранее уничтожили все поля, включая электромагнитные и гравитационные. Как же тогда эти пластинки ухитряются почувствовать друг друга на расстоянии? Конечно, притяжение между пластинками очень, очень слабенькое, но ведь есть же! Подчеркнем: это - не вымысел, это - экспериментально установленный факт. Данный эффект носит название эффекта Казимира. Для того чтобы разобраться, в чем соль этого фокуса, давайте заглянем за кулисы и попытаемся "разоблачить" природу. Для этого надо сделать всего несколько шагов. Шаг первый. Вот простая задача: дан шарик массой m на невесомой пружине жесткостью k. Спрашивается, при каких значениях импульса шарика и его координаты энергия системы принимает наименьшее значение и чему это значение равно? С точки зрения классической ньютоновской механики ответ очевиден. Если V - скорость, а x - координата шарика, то полная механическая энергия системы имеет вид Задавая произвольные начальные значения для V и x, мы получаем движение с какой-то определенной энергией. Поскольку V и x можно выбирать независимо и как угодно, а выражение для энергии зависит от квадратов этих величин, наименьшее значение энергии равно нулю. Ясно, что при нулевом значении энергии скорость и координата как были равны нулю в начальный момент времени, так и останутся равными нулю во все последующие моменты времени согласно закону сохранения энергии. Итак, мы получили ответ: состояние классического осциллятора, соответствующее состоянию с минимально возможной энергией, - это состояние абсолютного покоя. Увы, покой нам только снится. У природы свой взгляд на решение этой школьной задачи. Она, природа, особенно если дело доходит до ее обожаемых электрончиков-позитрончиков, разных там атомов и молекул, объявила нам, что живут они не по ньютоновским законам, а по своим - квантовым. Квантовая механика утверждает, что никакая система принципиально не может находиться в состоянии абсолютного покоя, и этот вывод квантовой механики подтвержден экспериментально! Наша простенькая задача неожиданно усложнилась. Теперь даже в основном состоянии - состоянии с минимальной энергией - система просто обязана находиться в непрерывном движении. Наш шарик на самом деле дрожит (или, как это говорят "по-ученому", - флуктуирует) около положения равновесия. Конечно, амплитуда этих колебаний очень и очень мала. Только природа может "увидеть" что-то такого маленького размера. Человеческий глаз явлений, происходящих в столь маленьком масштабе, не различает. Вот поэтому и живем мы спокойно и счастливо в правильном ньютоновском мире, и наш дом никаких "квантовых" флуктуаций не испытывает. Стоит себе, как вкопанный, и стоит. Но вернемся к нашей задаче. Сделаем второй шаг. Правда, как нам его сделать, как нам надо поступить, чтобы найти минимальное значение энергии, действуя по правилам квантовой механики? Первое правило квантовой механики гласит: мы не имеем права выбирать значения импульса и координаты шарика как нам заблагорассудится. Предположим, мы откуда-то знаем, по какому закону двигается шарик в состоянии с минимальной энергией. (Такое состояние в квантовой механике называют основным состоянием.) Тогда мы можем вычислить средне-квадратичное отклонение от положения равновесия ср.зн. x2 и средне-квадратичное значение импульса ср.зн. p2. Черта означает, что мы усредняем эти величины по периоду колебаний. Согласно квантово-механическим представлениям эти величины связаны соотношением (ср.зн. x2)1/2(ср.зн. p2)1/2 | (h) 2 | , | | (1.2) | где (h) - знаменитая постоянная Планка. Запомните это соотношение! Оно играет основную роль в наблюдаемых хитросплетениях, подсовываемых нам природой вместо простых и однозначных классических построений. Неравенство (1.2 ) называется соотношением неопределенности. Итак, правило номер два: чтобы вычислить энергию основного состояния, мы должны использовать соотношение неопределенности. Проделаем соответствующие вычисления. Поскольку мы исследуем малые колебания возле положения равновесия, положим ср.зн. x2x2, ср.зн. p2p2. Как это ни странно, но выражение для полной механической энергии природа решила оставить без изменения. Единственное условие состоит в том, что в этом выражении импульс и координата всегда должны быть связаны соотношением неопределенности. Если считать, что p2·x2(h)2/4, то полная энергия является функцией только одной переменной. Действительно, с учетом равенства (1.1 ) получаем Энергия основного состояния равна наименьшему значению функции E = E(x). Чтобы найти это значение, применим неравенство между средним арифметическим и средним геометрическим двух положительных чисел. Имеем | (h)2 8mx2 | + | kx2 2 | 2 | | (h)2 8mx2 | · | kx2 2 | | 1/2 | = | (h) 2 | | | k m | | 1/2 | , | | причем равенство достигается, когда откуда Таким образом, получаем где = (k/m)1/2. Конечно, точное решение задачи об энергии основного состояния осциллятора значительно сложнее и выходит за рамки школьной математики. Интересно другое: результат, полученный нами, совпадает с точным! Кстати, это не такой уж редкий случай в физике, когда простые оценки приводят к правильному ответу. Несмотря на простоту данного результата и необычайную легкость, с которой мы его получили, по-хорошему его надо бы вставить в рамочку и повесить на стенку рядом с уравнением Эйнштейна E = mс2. Ведь он кардинально меняет наши представления о том, что это такое, когда ничего нет. Кстати, а о чем это мы? Зачем мы вдруг начали решать задачу об осцилляторе, если в начале так долго и красиво говорили об абсолютном вакууме. Нет, не зря мы проводили эти вычисления. Вспоминайте: вакуум - это полное отсутствие чего-либо. Именно с таким расчетом мы готовили сцену для демонстрации эффекта Казимира. Мы тщательно убирали частицы и поля, т.е. уменьшали энергию Вселенной. Действительно, была частица, была Эйнштейновская энергия mc2, не стало частицы - полная энергия системы понизилась на эту величину. Было электромагнитное поле (т.е. существовала неразрывная парочка: электрическая E плюс магнитная B составляющие) - была энергия ( здесь 0 и 0 - электрическая и магнитная постоянные, E - напряженность электрического, а B - индукция магнитного полей). Не стало электромагнитного поля, значит, снова уменьшилась полная энергия нашей сцены - Вселенной. Приготовленная к выступлению наша площадка, вакуум, это, по сути и по определению, - состояние с минимально возможной энергией. В нашей осцилляторной задаче основное состояние и есть этот "осцилляторный" вакуум. Правда, странный получился у нас ответ. Хотели получить пустоту, отсутствие чего-либо, а получили какое-то неуничтожимое дрожание. Мотивируя тем, что она живет по своим квантовым законам и Ньютон ей не указ, природа припрятала в рукаве энергию (h)/2, а, следовательно, ее "осцилляторная" шляпа отнюдь не пуста. Что-то там все время колеблется, меняется, живет, хотя мы, зрители, этого не видим. Дело в том, что согласно тем же самым квантовомеханическим правилам игры мы можем "видеть", т.е. наблюдать только среднее значение любой величины. У обнаруженного нами дрожания или, как его по-другому называют, нулевого колебания, средние значения как импульса, так и координаты равны нулю. Шаг вправо, шаг влево, а в результате остался посередине. В общем, ничего не видно, а что-то там шевелится. Раз природа один раз оступилась и сжульничала, верить ей не приходится. Вот разрешили мы ей поиграть с электромагнитным полем, а потом попробовали отнять у нее эту игрушку, т.е. захотели получить состояние с минимальной энергией. Ну, наверняка она и здесь что-то припрятала! Вопрос только в том, сколько? Оказывается, ответ содержится в уже решенной нами задаче о шарике на пружинке. Мы знаем из школы, что если система совершает гармонические колебания, то энергия ее имеет как раз тот вид, который мы выписали выше для энергии шарика. Надо только помнить, что "координата" теперь - это переменная, описывающая отклонение от положения равновесия. Например, для математического маятника вместо x надо поставить в наше выражение угол отклонения от вертикали , а вместо скорости - /t. Для колебательного контура вместо x надо подставить заряд Q, а вместо скорости - ток j. Разумеется, в зависимости от ситуации изменится и смысл постоянных k, m. В случае с электромагнитным полем можно рассуждать и по-другому: аналогом энергии шарика является энергия электромагнитной волны В задаче о шарике, если импульс больше, то координата меньше, так и колеблются со сдвигом. То же самое происходит в электромагнитной волне: больше магнитная составляющая - меньше электрическая, так и перетекают друг в друга. Это очень похоже на шарик на пружинке, и можно было бы сразу вместо x и p писать E и B. Частота таких колебаний связана с длиной электромагнитной волны хорошо известным соотношением Метод получения этого результата, хотя и похож на фокус, удивительно прост. Для того чтобы придать смысл формальному манипулированию с бесконечностями, надо сделать сначала суммы конечными. Предположим, что очень коротких волн не бывает, т.е. в сумме по мы ограничимся только > |