Суббота, 08 Фев 2025, 10:47
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 15
Гостей: 15
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Бескоалиционные игры


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
11 Апр 2013, 13:00

Антагонистические игры, которые мы изучали ранее, описывают конфликты весьма частного вида. Более того, для большинства имеющих место в реальной жизни конфликтов антагонистические игры либо вовсе не могут считаться приемлемыми, адекватными описаниями, либо, в лучшем случае, могут рассматриваться как первые грубые приближения.

Во-первых, антагонистические игры никак не затрагивают своими описаниями конфликты с числом строк, большим чем два. В месте с тем, такие многосторонние конфликты не только встречаются в действительности, но являются принципиально более сложными, чем конфликты с двумя участниками, и даже не поддаются сведению к последним.

Во-вторых, даже в конфликтах с двумя участниками интересы сторон вовсе не обязаны быть противоположными; во многих конфликтах такого рода случается так, что одна из ситуаций оказывается предпочтительнее другой для обоих участников.

В-третьих, даже если любые две ситуации сравниваются игроками по их предпочтительности противоположным образом, различие разностей в оценках этой предпочтительности оставляет место для соглашений, компромисов и коопераций.

Наконец, в-четвёртых, содержательная острота конфликта не обязательно соответствует его формальной антагонистичности. Например, при встрече двух боевых единиц воюющих сторон (скажем, танков) обоюдное их стремление уничтожить друг друга не выражает антогонистичности конфликта: в антогонистическом конфликте цели сторон оказываются строго противоположными, и стремлению одной стороны уничтожить другую противоположным будет стремление избежать уничтожения.

В качестве примера БАИ рассмотрим:

1. Игры двух лиц с произвольной суммой.

Бескоалиционные игры.

В конечной бескоалиционной игре двух игроков (КБИДИ)каждый из них делает один ход – выбирает одну стратегию из имеющегося у него конечного числа стратегий, и после этого он получает свой выигрыш согласно определённым для каждого из них матрицами выигрышей. Другими словами КБИДИ полностью определяется двумя матрицами выигрышей для двух игроков. Поэтому такие игры называются биматричными. Пусть у игрока 1 имеется m стратегий, i = Бескоалиционные игры, у игрока 2 имеется n стратегий, j = Бескоалиционные игры. Выигрыши игроков 1 и 2 соответственно задаются матрицами

А = Бескоалиционные игры,   В = Бескоалиционные игры

Будем по-прежнему считать полный набор вероятностей  x = (x1, ..., xm) применения 1 игроком своих чистых стратегий смешанной стратегией игрока 1, и у = (y1, ..., yn) – смешанной стратегией игрока 2. тогда средние выигрыши игроков 1 и 2 соответственно равны

Бескоалиционные игры                  Бескоалиционные игры

Ситуация равновесия для биматричной игры составляет пару (x,y) таких смешанных стратегий игроков 1 и 2, которые удовлетворяют неравенствам :

Бескоалиционные игры

или

Бескоалиционные игры

Для определения ситуаций равновесия необходимо решить систему неравенств (1) и (2)  ( Бескоалиционные игры и Бескоалиционные игры) относительно неизвестных x = (x1, ..., xm)  и  у = (y1, ..., yn) при условиях

Бескоалиционные игры,   Бескоалиционные игры,   xi ³ 0   (i = Бескоалиционные игры),   yj ³ 0   (j = Бескоалиционные игры).

Теорема (Нэша). Каждая биматричная игра имеет по крайней мере одну ситуацию равновесия.

В качестве примера рассмотрим случай, когда каждый игрок имеет две чистые стратегии. В этом случае матрицы A и B равны :

A = Бескоалиционные игры,   B = Бескоалиционные игры.

Смешанные стратегии для игроков 1 и 2 имеют вид :

(x, 1– x),    (y, 1– y)          0 £ x £ 1;   0 £ y £ 1,

а средние выигрыши равны :

E1(A,x,y) = xA Бескоалиционные игры = (x; 1- x) Бескоалиционные игры Бескоалиционные игры=

= (a11 – a12 – a21 + a22) xy + (a12 - a22) x + (a21 - a22) y + a22.

E2(B,x,y) = xB Бескоалиционные игры = (x; 1- x) Бескоалиционные игры Бескоалиционные игры=

= (b11 - b12 - b21 + b22) xy + (b12 - b22) x + (b21 - b22) y + b22.

Условия Бескоалиционные игры и Бескоалиционные игры будут выглядеть

Бескоалиционные игры Бескоалиционные игры £  E1(A,x,y),

(x; 1- x) Бескоалиционные игры £  E2(B,x,y),

или

Бескоалиционные игры                     Бескоалиционные игры

Бескоалиционные игры                    Бескоалиционные игры

Преобразовав (3) и (4), получим

Бескоалиционные игры(1- x) y + Бескоалиционные игры (1- x) £ 0

(a11 - a12 - a21 + a22) xy + (a12 - a22) x ³ 0

или

Бескоалиционные игры

Т. о., множество всех приемлемых стратегий для игрока 1 удовлетворяет условиям (5) и (6),  0 £ x £ 1;  0 £ y £ 1. Чтобы найти x рассмотрим 3 случая :

1.   Если x = 0, то (6) справедливо " y, а (5) имеет вид :

a1y - a2 £ 0.                                      Бескоалиционные игры

2.   Если x = 1, то (5) справедливо " y, а (6) имеет вид :

a1y - a2 ³ 0.                                      Бескоалиционные игры

3.   Если 0 < x < 1, то (5) разделим на (1 - x), а (6) – на  x  и получим

Бескоалиционные игры        Бескоалиционные игры

Итак, множество К решений системы (5) – (6) состоит из

всех ситуаций вида (0; y), если  a1y - a2 £ 0;  0 £ y £ 1;

всех ситуаций вида (x; y), если  a1y - a2 = 0;  0 < x < 1;

всех ситуаций вида (1; y), если  a1y - a2 ³ 0;  0 £ y £ 1.

Если  a1 = a2 = 0, то решением является  xÎ[0; 1],  yÎ[0; 1],  т. к. все неравенства    (7) – (8) выполняются при всех  x и y,  т. е. множество приемлемых для игрока 1 ситуаций покрывает весь единичный квадрат.

Если  a1 = 0,  a2 ¹ 0,  то выполняется либо (7), либо (8), и поэтому решением является либо  x = 0, либо x=1  при  0 £ y £ 1 (приемлемой стратегии в игре не существует).

Если  a1 > 0,  то из (7) получаем решение

x = 0;  y £ Бескоалиционные игры:= a,

Из (8) следует ещё решение  x = 1,  y ³ a,  из (9) следует ещё решение

0 < x < 1,   y = a.

Если a1 < 0, то решение следующее :

x = 0,  y ³ a;  x = 1,  y £ a;  0 < x < 1,  y = a.

При этом необходимо учитывать, что дополнительно должно быть

0 £ y £ 1.

Геометрически это выглядит следующим образом :

Бескоалиционные игры                y                   ¥                            y                  ¥                           y                   ¥

            1                                                 1                                                1

                                       a1>0                                           a1>0                                           a1>0

                                       a<0                                            a=0                                           1< a<1

                                                                                                                           (x, a)

           0                        1           x          0                       1            x           0                      1           x

                 – ¥                                             – ¥                                             – ¥

Бескоалиционные игры Бескоалиционные игры Бескоалиционные игры       y                   ¥                           y                                                  y

                                                                               ¥                          ¥

  1                         a1>0                 1                        a1>0                 1                         a1< 0

            (x, 1)         a=1                                           a >1                          (x, a)        0< a<1

                                                          (0, b)

                                       x                                                 x                                                  x

  0   – ¥              1                        0   – ¥              1                       0               – ¥   1

Для игрока 2 исследования аналогичны. Если ввести обозначения

b1 := b11 - b12 - b21 + b22

b2 := b22 - Бескоалиционные игры

то множество L приемлемых для него ситуаций состоит из :

всех ситуаций вида (x, 0), если  b1x - b2 < 0; 0 £ x £ 1,

всех ситуаций вида (x, y), если  b1x - b2 = 0; 0 £ x £ 1; 0 < y < 1,

всех ситуаций вида (x, 1), если  b1x - b2 > 0; 0 £ x £ 1.

Результаты следующие :

если  b1 = b2 = 0, то решение 0 £ x £ 1; 0 £ y £ 1;

если  b1 = 0; b2 ¹ 0, то решение либо y = 0, либо y = 1 при 0 £ x £ 1 (приемлемой стратегии в игре не существует);

если  b1 > 0, то решения следующие :

y = 0,  x < Бескоалиционные игры= b;  y = 1,  x > b;  0 < y < 1;  x = b;

если  b1 < 0, то решения следующие :

y = 0,  x > b;  y = 1,  x < b;  0 < y < 1;  x = b

При этом необходимо учитывать, что 0 £ x £ 1.

Бескоалиционные игры Бескоалиционные игры                y                                                                           y

           1                                                                      1

                (b,y)                                                                    (b,y)

                                                  x                                                                           x

           0                    1                                                     0                    1

                    b1 > 0                                                                     b1 < 0

                  0 < b < 1                                                               0 < b < 1

Решением игры является пересечение множеств K и L, т.е. те значения  x и y, которые являются общими для множеств K и L.

                      y                                                                          y

Бескоалиционные игры                1                                                                     1

   

5 + 2 + 1 + 1 = 9 >

Так как b1 >

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 199 | Загрузок: 5 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Суббота
08 Фев 2025
10:47


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz