Из курса математики известны 3 способа задания функциональных зависимостей: аналитический графический табличный Табличный способ обычно возникает в результате эксперемента. Недостаток табличного задания функции заключается в том, что найдутся значения переменных которые неопределены таблицей. Для отыскания таких значений определяют приближающуюся к заданной функцию, называемой аппроксмирующей, а действие замены аппроксимацией. Аппроксимация заключается в том, что используя имеющуюся информацию по f(x) можно рассмотреть другую функцию φ(ч) близкую в некотором смысле к f(x), позволяющую выполнить над ней соответствующие операции и получить оценку погрешность такой замены. φ(υ)- аппроксимирующая функция. Интерполяция (частный случай аппроксимации) Если для табличной функции y=f(x), имеющей значение x0 f(x0) требуется построить аппроксимирующюю функцию j (x) совпадающую в узлах с xi c заданной, то такой способ называется интерполяцией При интерполяции, заданная функция f(x) очень часто аппроксимируется с помощью многочлена, имеющего общий вид j (x)=pn(x)=anxn+an-1xn-1+…+a0 В данном многочлене необходимо найти коэффициенты an ,an-1, …a0 , так как задачей является интерполирование, то определение коэффициентов необходимо выполнить из условия равенства: Pn(xi)=yi i=0,1,…n Для определения коэффициентов применяют интерполяционные многочлены специального вида, к ним относится и полином Лагранжа Ln(x). i¹ j В точках отличных от узлов интерполяции полином Лагранжа в общем случае не совпадает с заданной функцией . Задание С помощью интерполяционного полинома Лагранжа вычислить значение функции y в точке xc, узлы интерполяции расположены равномерно с шагом D х=4,1 начиная с точки х0=1,3 даны значения функции y={-6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27}. ГСА для данного метода CLS DIM Y(9) DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27 X0 = 1.3: H = 4.1: N = 10: XC = 10 FOR I = 0 TO N - 1 1 X(I) = X0 + H * I READ Y(I) PRINT Y(I); X(I) NEXT I S1 = 0: S2 = 0: S3 = 0: S4 = 0 FOR I = 0 TO N - 1 2 S1 = S1 + X(I) ^ 2 S2 = S2 + X(I) S3 = S3 + X(I) * Y(I) S4 = S4 + Y(I) NEXT I D = S1 * N - S2 ^ 2 D1 = S3 * N - S4 * S2 D0 = S1 * S4 - S3 * S2 A1 = D1 / D: A0 = D0 / D YC = A1 * XC + A0 PRINT "A0="; A0, "A1="; A1, "YC="; YC FOR X = 0 TO 50 STEP 10 Y = A1 * X + A0 PRINT X, Y NEXT X END XC= 10 Х Y 1.3 -6.56 5.4 -3.77 9.5 -1.84 13.6 .1 17.7 2.29 21.8 4.31 25.9 5.86 30 8.82 34.1 11.33 38.2 11.27 S=-1.594203 АППРОКСИМАЦИЯ ФУНКЦИЕЙ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi,yi), i=0,1,2,...n, где n - общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности. При аппроксимации желательно получить относительно простую функциональную зависимость (например, полином), которая позволила бы "сгладить" экспериментальные погрешности, получить промежуточные и экстраполяционные значения функций, изначально не содержащиеся в исходной табличной информации. Графическая интерпретация аппроксимации. Эта функциональная (аналитическая) зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. Критерием точности или достаточно "хорошего" приближения могут служить несколько условий. Обозначим через fi значение, вычисленное из функциональной зависимости для x=xi и сопоставляемое с yi. Одно из условий согласования можно записать как S = (fi-yi) min , т.е. сумма отклонений табличных и функциональных значений для одинаковых x=xi должна быть минимальной (метод средних). Отклонения могут иметь разные знаки, поэтому достаточная точность в ряде случаев не достигается. Использование критерия S = |fi-yi| min , также не приемлемо, т.к. абсолютное значение не имеет производной в точке минимума. Учитывая вышеизложенное, используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость, при которой S = (fi-yi)2 , (1) обращается в минимум. В качестве функциональной зависимости рассмотрим многочлен f(x)=C0 + C1X + C2X2+...+CMXM. (2) Формула (1) примет вид S = ( C0 + C1Xi + C2Xi2+...+CMXiM - Yi ) 2 Условия минимума S можно записать, приравнивая нулю частные производные S по независимым переменным С0,С1,...СМ : SC0 = 2 ( C0 + C1 Xi + C2 Xi2+...+CM XiM - Yi ) = 0 , SC1 = 2 ( C0 + C1 Xi + C2 Xi2+...+CM XiM - yi ) Xi = 0 ,(3) SCM = 2 ( C0 + C1 Xi + C2 Xi2+...+CM XiM - Yi ) XiM = 0 , Тогда из (3) можно получить систему нормальных уравнений C0 (N+1) + C1 Xi + C2 Xi2 +...+ CM XiM = Yi , C0 Xi + C1 Xi2 + C2 Xi3 +...+ CM XiM+1 = Yi Xi ,(4) C0 XiM + C1 XiM+1 + C2 XiM+2 +...+ CM Xi2M = Yi XiM . Для определения коэффициентов Сi и, следовательно, искомой зависимости (2) необходимо вычислить суммы и решить систему уравнений (4). Матрица системы (4) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при ее решении. (N+1) | Xi | Xi2 | ... | XiM | Yi | Xi | Xi2 | Xi3 | ... | XiM+1 | Yi Xi | ... | ... | ... | ... | ... | ... | XiM | XiM+1 | XiM+2 | ... | Xi2M | Yi XiM | Нетрудно видеть, что для формирования расширенной матрицы (4а) достаточно вычислить только элементы первой строки и двух последних столбцов, остальные элементы не являются "оригинальными" и заполняются с помощью циклического присвоения. Задание Найти коэффициенты прямой и определить значение функции y{-6.56,-3.77, -1.84,0.1,2.29,4.31,5.56,8.82,11.33,11.27}, x0=1.3 h=4.1, и определить интеграл заданной функции. Программа ¦CLS ¦XC = 10: X0 = 1.3: H = 4.1: N = 10 ¦DIM Y(9): DIM X(9) ¦DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27 ¦FOR I = 0 TO N - 1 ¦X = X0 + H * I: ¦X(I) = X ¦READ Y(I) ¦PRINT X(I), Y(I) ¦NEXT I ¦S1 = 0: S2 = 0: S3 = 0: S4 = 0 ¦I = 0 ¦10 S1 = S1 + X(I) ^ 2: |