ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ПУТЕЙ СООБЩЕНИЯ
Кафедра: «Электроснабжение железнодорожного транспорта»
Дисциплина: «Основы теории надёжности»
Курсовая работа
«Анализ надёжности и резервирование
технической системы»
Вариант-079
Выполнил:
студент группы ЭНС-04-2
Иванов А. К.
Проверил:
канд. техн. наук, доцент
Герасимов Л. Н.
Иркутск 2008
Введение
В сложных технических устройствах без резервирования никогда не удается достичь высокой надежности, даже используя элементы с высокими показателями безотказности.
Система со структурным резервированием – это система с избыточностью элементов, т. е. с резервными составляющими, избыточными по отношению к минимально необходимой (основной) структуре и выполняющими те же функции, что и основные элементы. В системах с резервированием работоспособность обеспечивается до тех пор, пока для замены отказавших основных элементов имеются в наличии резервные.
По способу включения резервных элементов резервирование подразделяют на два вида:
· активное (ненагруженное) – резервные элементы вводятся в работу только после отказа основных элементов;
· пассивное (нагруженное) – резервные элементы функционируют наравне с основными (постоянно включены в работу). Этот вид резервирования достаточно широко распространен, т.к. обеспечивает самый высокий коэффициент оперативной готовности.
Кратко остановимся на расчете надежности систем с ограничением по нагрузке. Если условия функционирования таковы, что для работоспособности системы необходимо, чтобы по меньшей мере r элементов из n были работоспособны, то число необходимых рабочих элементов равно r, резервных – (n - r). Отказ системы наступает при условии отказа (n – r + 1) элементов. Число r, в общем случае, зависит от многих факторов, но в большинстве расчетов надежности требуется обеспечить пропускную (или нагрузочную) способность системы в заданном режиме эксплуатации. При этом отказы можно считать независимыми только тогда, когда при изменении числа находящихся в работе элементов не наблюдается перегрузки, влияющей на возможность возникновения отказа.
Задание на расчёт
Для заданной основной схемы электротехнического объекта следует:
· Определить вероятность работоспособного состояния объекта (ВБР) для расчетного уровня нагрузки и построить зависимость данного показателя надежности от нагрузки.
· Обеспечить заданный уровень надежности объекта резервированием его слабых звеньев с учетом требований минимальной избыточности и стоимости резервирования.
В результате расчета должна быть получена схема объекта с резервированием, обеспечивающим нормативный уровень надежности для заданной расчетной нагрузки при минимальных затратах на реконструкцию исходной схемы.
Состав исходных данных:
· Ns - номер схемы системы электроснабжения (основная система);
· [A,B,C] – множество типов элементов;
· Zi - пропускная способность или производительность элементов;
· рi - вероятность работоспособного состояния (коэффициенты готовности) элементов (три типа);
· ci - удельная стоимость элементов (три типа);
· Zmax - максимальный уровень нагрузки (в условных единицах) ;
· Zн – заданный расчетный уровень нагрузки;
· P норм - требуемый (нормативный) уровень надежности объекта.
Любой тип определяется своими параметрами, так, обозначение A(Zi, рi, ci ) полностью описывает характеристики элемента типа A.
Удельные стоимостные характеристики и коэффициенты готовности элементов зависят от их показателя надежности (pi) - чем выше надежность и пропускная способность элемента, тем выше его стоимость.
При определении зависимости надежности электроснабжения от уровня нагрузки следует рассмотреть ряд значений нагрузки от 0 до Zmax с шагом примерно в 10% – 15% от Zmax . При этом нагрузка в Zн единиц, выбираемая при проектировании в пределах 50% Zmax < Zн < Zmax , считается основной расчетной нагрузкой, для которой должен быть обеспечен требуемый (нормативный) уровень надежности объекта.
ИСХОДНЫЕ ДАННЫЕ
Схема установки представлена на рис. 1.
Рис. 1.
Вероятности работоспособного состояния (коэффициенты готовности) pi и пропускной способности (производительности) Zi элементов установки приведены в таблице 1.
Таблица 1
Основная система |
Номер и обозначение элемента xi | х1 | х2 | х3 | х4 | х5 | х6 |
Тип элемента | В | В | A | С | В | В |
Вероятность работоспособного состояния pi | 0.9 | 0.9 | 0.9 | 0.95 | 0.9 | 0.9 |
Пропускная способность Zi | 40 | 60 | 70 | 90 | 40 | 60 |
Расчетная нагрузка установки: Zн = 70 ед., максимальная - Zmax = 160 ед. Нормативный показатель надежности установки принят равным P норм = 0.98.
Для резервирования схемы предлагается использовать элементы типа А, В или С; их параметры даны в таблице 2.
Таблица 2
Данные элементов резервирования
Тип резервного элемента | A | A | A | В | В | В | C | C | C |
Вероятность работоспособного состояния pi | 0.85 | 0.90 | 0.98 | 0.8 | 0.85 | 0.9 | 0.85 | 0.95 | 0.97 |
Пропускная способность Zi | 50 | 70 | 90 | 60 | 70 | 100 | 50 | 80 | 110 |
Удельная стоимость, тыс.руб./ед.мощности ci | 6 | 8 | 9 | 13 | 15 | 19 | 65 | 70 | 75 |
Вычисление структурных функций
Для рассматриваемой схемы структурная функция S(Z) имеет вид
S(Z) = β1( α(β2( х1 х2)х3β3( х5 х6)) х4 ).
В этом выражении операция β2 предполагает преобразование двух элементов х1,х2 в один эквивалентный структурный элемент (который так и обозначим – β2), β3 состоит также из двух элементов х5, х6 (которые тоже будут преобразованы в один элемент – β3). Операция α предполагает преобразование двух эквивалентных структурных элементов β2,β3 и одного элемента х3. При этом эквивалент α и элемент х4 вместе образуют два параллельно соединенных (в смысле надежности) элемента, которые посредством операции β1 превращаются в один эквивалентный элемент с соответствующей функцией распределения вероятностей состояний.
Вычислим выражения для каждого эквивалента:
β2 = (p1[40]+q1[0])( p2[60]+q2[0]) =
= p1 p2[40+60] + p1 q2[40+0] + q1 p2[0+60] + q1 q2[0+0] =
= 0,9•0,9[100] + 0,9•0,1[40] + 0,1•0,9[60] + 0,1•0,1[0] =
= 0,81[100]+0,09[40] + 0,09[60]+0,01[0]= 1 (проверка).
Т.к. элементы х5 и х6 полностью идентичны элементам х1 и х2, то операция β3:
β3 = 0,81[100] + 0,09[60] +0,09[40]+0,01[0].
α= (0,81[100] + 0,09[60] +0,09[40]+0,01[0])•(0,9[70]+0,1[0]) • (0,81[100]+ +0,09[60] + 0,09[40] +0,01[0]) = (0,81•0,9[min{100;70}]+ 0,81•0,1[min{100;0}] + 0,09•0,9[min{60;70}] + 0,09•0,1[min{60;0}] + 0,09•0,9[min{40;70}] + +0,09•0,1[min{40;0}]+0,01•0,9[min{0;70}] + 0,01•0,1[min{0;0}]) • (0,81[100] + 0,09[60] +0,09[40]+0,01[0]) =
=(0,729[70]+ 0,081[0] + 0,081[60]+0,009[0] + 0,081[40] +0,009[0]+0,009[0] + +0,001[0]) • (0,81[100] + 0,09[60] +0,09[40]+0,01[0])=
=(0,729[70]+0,081[60]+0,081[40]+0,109[0]) • (0,81[100]+0,09[60]+ +0,09[40]+0,01[0]) =0,729•0,81[min{70;100}]+ 0,729•0,09[min{70;60}] + 0,729•0,09[min{70;40}] + 0,729•0,01[min{70;0}] + 0,081•0,81[min{60;100}]+ 0,081•0,09[min{60;60}] + 0,081•0,09[min{60;40}] + 0,081•0,01[min{60;0}]+ 0,081•0,81[min{40;100}]+ 0,081•0,09[min{40;60}] + 0,081•0,09[min{40;40}] + 0,081•0,01[min{40;0}]+ 0,109•0,81[min{0;100}]+ 0,109•0,09[min{0;60}] + 0,109•0,09[min{0;40}] + 0,109•0,01[min{0;0}] =
= 0,59049[70]+ 0,06561[60] + 0,06561[40] + 0,00729[0] + 0,06561[60]+ 0,00729[60] + 0,00729[40] + 0,00081[0]+ 0,06561[40]+ 0,00729[40] + 0,00729[40] + 0,00081[0]+ 0,08829[0]+ 0,00981[0] + 0,00981[0] + 0,00109[0]=
(складываем вероятности при одинаковой пропускной способности)
= 0,59049[70]+0,13851[60]+0,15309[40]+0,11791[0] =1 (проверка).
S(Z) =β1( α х4 ) = (0,59049[70]+0,13851[60]+0,15309[40]+0,11791[0]) •
(0,95[90]+ 0,05[0]) =
= 0,59049•0,95[70+90] + 0,59049•0,05[70+0] + 0,13851•0,95[60+90] + 0,13851•0,05[60+0] + 0,15309•0,95[40+90] + 0,15309•0,05[40+0] + 0,11791•0,95[0+90] + 0,11791•0,05[0+0]=
= 0,56097[160] + 0,02952[70] + 0,13159[150] + 0,00692[60]+ 0,14544[130]+ 0,00765[40] + 0,11202[90] + 0,00589[0] =
(суммируем и упорядочим вероятности по значению пропускной способности)
= 0