Четверг, 09 Янв 2025, 22:21
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51656


Онлайн всего: 54
Гостей: 54
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Аналитическая геометрия


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
09 Апр 2013, 11:38

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.

Пусть задана система векторов а1, а2, а3,…,ал (1) одной размерности.

Определение: система векторов (1) называется линейно-независимой, если равенство a 1а1+a 2а2+…+a лал=0 (2) выполняется лишь в том случае, когда все числа a 1, a 2,…, a л=0 и Î R

Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном a i¹ 0 (i=1,…,k)

Свойства

Если система векторов содержит нулевой вектор, то она линейно зависима

Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.

Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.

Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.

Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.

Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.

Теорема: Если заданы два вектора a и b, причем а¹ 0 и эти векторы коллинеарны, то найдется такое действительное число g , что b=g a.

Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.

Доказательство: достаточность. Т.к. векторы коллинеарны, то b=g a. Будем считать, что а,b¹ 0 (если нет, то система линейно-зависима по 1 свойству). 1b-g a=0. Т.к. коэфф. При b¹ 0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. a а+b b=0, a ¹ 0. а= -b/a *b. а и b коллинеарны по определению умножения вектора на число.

Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.

Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т.к. векторы линейно-зависимы, то a а+b b+g c=0, g ¹ 0. с= - a /g *а - b /g *b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.

БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.

1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.

В множестве векторов на прямой базис состоит из одного ненулевого вектора.

В качестве базиса множества векторов на плоскости можно взять произвольную пару.

В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.

2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях.

Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними.

(а,b)=|a| |b| cos u, u<90, пр-е полож.; u=90, пр-е =0; u>90, пр-е отриц.

Свойства:

(а,b)= (b,а)

(a а,b)= a (а,b)

(а+b,с)= (а,с)+ (b,с)

(а,а)=|a|2 – скал.квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0.

Определение: вектор называется нормированным, если его скал.кв.равен 1.

Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.

Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат.

Найдем формулу угла между векторами по определению скалярного произведения. cos u=a,b/|a||b|=x1x2+y1y2+z1z2/sqrt(x12+y12+z12)*sqrt(x22+y22+z22)

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: векторным произведением двух векторов a и b обозначаемым [a,b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с,а)=0 и (с,b)=0. 3. а, b, с образуют правую тройку.

Свойства:

[a,b]= - [b,a]

[a а,b]= a [а,b]

[a+b,c]=[a,c]+[b,c]

[a,a]=0

Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.

Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.

Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй – координаты первого вектора, в третьей – координаты второго.

Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. ea=a/|a|

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.

1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол между пр.

Ах+By+C=0 (1), где A, B одновр.не равны нулю.

Теорема: n(A,B) ортоганален прямой заданной ур-ем (1).

Доказательство: подставим коорд. т.М0 в ур-е (1) и получим Ах0+By0+C=0 (1’). Вычтем (1)-(1’) получим А(х-х0)+B(y-y0)=0, n(A,B), М0М(х-х0, y-y0). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M0M ортоганальны. Т.о. n ортоганлен прямой. Вектор n(A,B) называется нормальным вектором прямой.

Замечание: пусть ур-я А1х+B1y+C1=0 и А2х+B2y+C2=0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А1=t*А2 и т.д.

Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным.

1. С=0, Ах+By=0 – проходит ч/з (0,0)

2. С=0, А=0, By=0, значит у=0

3. С=0, B=0, Ах=0, значит х=0

4. А=0, By+C=0, паралл. ОХ

5. B=0, Ах+C=0, паралл. OY

x/a+y/b=1.

Геом.смысл: прямая отсекает на осях координат отрезки а и b

x-x1/e=y-y1/m

Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M1М(х-х1; y-y1)

x-x1/x2-x1=y-y1/y2-y1

Пусть на прямой даны две точки М1(x1;y1) и М2(x2;y2). Т.к. на прямой заданы две точки, то задан направляющий вектор q(x2-x1; y2-y1)

y=kb+b.

u – угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u

Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x1/e/e=y-y1/m/e. y-y1=k(x-x1) при y1-kx1=b, y=kx+b

xcosq +ysinq -P=0

q - угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой , если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq , sinq ). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosq x+sinq y. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

xcosq +ysinq -P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2q =(A*t)2

Sin2q =(B*t)2

-p=C*t

cos2q +sin2q =t2(A2+B2), t2=1/A2+B2, t=± sqrt(1/ A2+B2). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.

7. Система: x=et+x1 и y=mt+y1

НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.

1. xcosq +ysinq -P=0

q - угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой , если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq , sinq ). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosq x+sinq y. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

xcosq +ysinq -P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2q =(A*t)2

Sin2q =(B*t)2

-p=C*t

cos2q +sin2q =t2(A2+B2), t2=1/A2+B2, t=± sqrt(1/ A2+B2). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.

2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону.

Теорема: Пусть задано нормальное уравнение прямой xcosq +ysinq -P=0 и М1(x1;y1), тогда отклонение точки М1 = x1cosq +y1sinq -P=0

Задача: найти расстояние от точки М0(x0;y0) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x0cosq +y0sinq -P|. d=|Ах0+By0+C|/sqrt(A2+B2)

ГИПЕРБОЛА.

Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная

Каноническое уравнение:

Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F1F2|=2c, М – произвольная точка гиперболы. r1, r2 – расстояния от М до фокусов;
|r2-r1|=2a; a<c;

Аналитическая геометрия, Аналитическая геометрия

Аналитическая геометрия

Аналитическая геометрия

Аналитическая геометрия

Аналитическая геометрия

x2c2-2a2xc+a2=a2(x2-2xc+c2+y2)

x2(c2-a2)-a2y2=a2(c2-a2)

c2-a2=b2

x2b2-a2y2=a2b2

Аналитическая геометрия - каноническое ур-е гиперболы

ПАРАБОЛА.

Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой.

Каноническое уравнение:

Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат.

|DF|=p, М – произвольная точка параболы; К – точка на директрисе; МF=r; MK=d;

r=sqrt((x-p/2)2+y2); d=p/2+x

Приравниваем и получаем:

y2=2px - каноническое уравнение параболы

ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ.

1. Определение: эксцентриситет – величина равная отношению с к а.

е=с/а

е эллипсв <1 (т.к. а>c)

е гиперболы >1 (т.к. с>a)

Определение: окружность – эллипс у которого а=b, с=0, е=0.

Выразим эксцентриситеты через а и b:

Аналитическая геометрия

Аналитическая геометрия

е эллипса является мерой его “вытянутости”

е гиперболы характеризует угол раствора между асимптотами

2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости a перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е<a)

D1: x= - a/e

D2: x= a/e

р=а(1-е2)/е – для эллипса

р=а(е2-1)/е – для гиперболы

ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы).

Доказательство: для эллипса.

r1/d1=e

Аналитическая геометрияx£ |a|, xe+a>0

r1=xe+a

d1 – расстояние от М(x,y) до прямой D1

xcos180+ysin180-p=0

x=-p

x=-a/e

бм=-x-a/e

d1=-бм (минус, т.к. прямая и точка по одну стороно о начала коорд.)

Аналитическая геометрия

Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если <1, гиперболу, если >1, параболу, если =1.

ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Пусть задан эллипс, парабола или правая ветвь гиперболы.

Пусть задан фокус этих кривых. Поместим полюс полярной системы в фокус кривой, а полярную ось совместим с осью симметрии, на которой находится фокус.

r= r

d=p+r cosj

e=r /p+r cosj

Аналитическая геометрия - полярное уравнение эллипса, параболы и правой ветви гиперболы.

КАСАТЕЛЬНАЯ К КРИВОЙ 2-ГО ПОРЯДКА.

Пусть задан эллипс в каноническом виде. Н

I2>

Теорема: Пусть задана линия элиптического типа т.е. I2>0 и пусть I1>0 следовательно уравнение (1) определяет: 1. I3<0 – эллипс; 2. I3=0 – точка; 3. I3>0 – ур-е (1) не определяет. Если I3=0 говорят, что эллипс вырождается в точку. Если I3>

1. пусть I2>0, I1>

I2=a11’’a22’’ >

I1= a11’’+a22’’ >

a11’’ > 0; a22’’ >

2. I3>

Доказательство: I2<0; I2= a11’’a22’’ < 0. Пусть a11’’>

Пусть I3>

т.к. у линий гиперболического и параболического типов I2£ 0, то они имеют асимптотические направления. Т.к. у эллипса I2>

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 146 | Загрузок: 1 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Четверг
09 Янв 2025
22:21


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz