Понедельник, 25 Ноя 2024, 11:05
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51647


Онлайн всего: 27
Гостей: 27
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Химия

Линейный гармонический осциллятор


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
15 Июн 2013, 21:42

Линейный гармонический осциллятор.

3.5.1. Периодические смещения ядер молекулы относительно некоторых равновесных  положений называют молекулярными колебаниями. Этот вид внутримолекулярного движения при некоторых упрощениях можно представить в виде совокупности однономерных движений, каждому из которых отвечает своя колебательная степень свободы.

3.5.2. Пространственным перемещениям центра масс молекулы отвечают 3 поступательные степени свободы. Движениям ее как целого относительно центра масс соответствуют вращательные степени свободы. Их число определяется минимально необходимым количеством плоских поворотов, требуемых для перевода молекулы в любую пространственную ориентацию относительно закрепленной системы координат, исходящей из центра масс. У молекулы с нелинейной равновесной геометрией ядерного остова таких поворотов 3 и столько же вращательных степеней свободы, а у молекул с линейной геометрией – достаточно лишь двух поворотов и вращательных степеней свободы две.

Всего же внешних механических степеней свободы, к которым относятся поступательные и вращательные, у молекул либо 6, либо 5. Если молекула содержит N-атомов, то для полного механического описания ядерных перемещений требуется 3N степеней свободы и на долю колебательных остается 3N-6 у нелинейных молекул и 3N-5 у линейных.

3.5.3. Простейшая, очень эффективная модель молекулярного одномерного колебания описывает колебание гармоническое, называемое линейным вибратором или линейным осциллятором. Для простоты, далее везде будем называть его просто осциллятором, за исключением специально оговариваемых ситуаций.

Из элементарной физики известно, что гармонические колебания классической системы порождаются упругой силой, линейно зависящей от смещения колеблющейся массы относительно равновесного положения, т.е.  (сила Гука). Потенциальная энергия упругих сил квадратично зависит от смещения:

.                           (3.70)

Напомним также, что константа упругости k связана с колеблющейся приведенной массой   μ   и собственной круговой частотой   ω  формулой

,      где ,                         (3.71)

так что потенциальная энергия имеет вид:

.                                    (3.72)

3.5.4. Решение уравнение Шредингера для гармонического осциллятора довольно сложно и требует специальных сведений из теории дифференциальных уравнений, хотя при этом не добавляется качественно новой информации по сравнению с задачами “ящика” и “ротатора”. Возможен иной, значительно более простой путь расчета уровней и волновых функций осциллятора, основанный на использовании только элементов алгебры операторов. Этот путь основан на совместном анализе уравнения Шредингера (колебательного гамильтониана) и коммутационного соотношения Гейзенберга (3.67). При этом мы получаем возможность как бы “пересчитывать” уровни и состояния, “перемещаясь” по их лесенке, с помощью специально вводимых операторов сдвига уровней-состояний.


3.5.5. Итак, рассмотрим систему операторных выражений, а именно:

гамильтониан $IMAGE6$                $IMAGE7$,                          (3.73)

коммутационное соотношение $IMAGE8$.                   (3.73а)

Введем подстановки, не влияющие на смысл формул, а лишь изменяю-щие  “масштабы” переменных

$IMAGE9$.       (3.74)

Умножая выражение (3.73) на 2μ, а (3.73а) на μω и используя подста-новки (3.74), можно  упростить формулы (3.73) и (3.73а)

$IMAGE10$,                                  (3.75)

$IMAGE11$,                                (3.76)

и для любого из дискретных уровней с номером υ уравнение Шредингера при-обретает вид:

$IMAGE12$.                        (3.77)

3.5.6. Гамильтониан (3.75) представлен в виде суммы квадратов двух операторов $IMAGE13$ и $IMAGE14$, связанных коммутационным соотношением  (3.76). Используя схему алгебры комплексных чисел (см. раздел 1.3.2.), попытаемся разложить гамильтониан (3.75) на сомножители,  содержащие только первые степени составляющих его операторов

$IMAGE15$,                                 (3.78)

$IMAGE16$.                                 (3.79)

3.5.7. Произведения комплексных чисел коммутативны, поэтому безразличен порядок записи комплексно-сопряженных сомножителей:

(a + ib) (a - ib) = (a - ib) (a + ib) = C·C* =|C|2.        (3.80)   

Так как операторы не обладают свойством коммутативности следует ожидать, что операторные произведения $IMAGE17$ и $IMAGE18$ различны и не равны гамильтониану, поэтому требуется исследовать их связь с гамильтонианом. При этом следует помнить, что в силу линейности операторов, слагаемые операторных сумм можно переставлять, а отдельные группы сомножителей можно объединять, так как операторные произведения обладают свойством ассоциативности.

$IMAGE19$,       (3.81)

$IMAGE20$.        (3.82)

Таким образом, произведения операторов $IMAGE21$ и $IMAGE22$ отличаются от гамильтониана на постоянную величину   $IMAGE23$ соответственно.

Подставим найденные в (3.81) и (3.82) выражения гамильтониана в уравнение Шредингера (3.77) и перенесем постоянные множители в правую часть полученных уравнений :

$IMAGE24$                              (3.83)

$IMAGE25$                           (3.84)

3.5.8. Для выяснения смысла операторов $IMAGE26$ и $IMAGE27$ еще раз подействуем первым из них на обе части уравнения (3.83), а вторым – на уравнение (3.84), т.е. домножим эти уравнения слева на $IMAGE26$ и $IMAGE29$ соответственно:

$IMAGE30$,          (3.85)

$IMAGE31$.          (3.86)

Подставим вместо произведений операторов ( $IMAGE18$) и ( $IMAGE17$) их выражения (3.82) и (3.81)  и опять перенесем постоянные величины Ω в правую часть уравнений:

$IMAGE34$                (3.87)

$IMAGE35$.               (3.88)

В итоге каждое из уравнений (3.87) и (3.88) приобрело стандартный вид уравнения Шредингера, но собственные функции в них ( $IMAGE36$) и ( $IMAGE37$) отличны от волновой функции исходного состояния Ψυ, а собственные значения $IMAGE38$ отличаются от исходного ευ на постоянную величину. Функции ( $IMAGE36$) отвечает уровень $IMAGE40$, на величину 2Ω сдвинутый вниз по отношению к уровню состояния Ψυ, т.е. оператор $IMAGE41$ произвел понижение уровня на один номер:

$IMAGE42$ .                                   (3.89)

Аналогично оператор $IMAGE27$ сдвигает номер уровня  и состояния Ψυ  на еди- ницу вверх:

$IMAGE44$.                                    (3.90)

Функции $IMAGE45$ и $IMAGE46$, полученные с помощью операторов $IMAGE27$ и $IMAGE41$ по формулам (3.89) и (3.90), не нормированы; но в дальнейших расчетах это несу-ественно. Состоянию $IMAGE49$ отвечает уровень $IMAGE50$,  а $IMAGE46$ – уровень $IMAGE52$, т.е.

$IMAGE53$.                               (3.91)

3.5.9. Переход к обычной энергетической шкале с использованием подста-новок (3.74б  и 3.74в) дает

$IMAGE54$ .                             (3.92)

Согласно формуле (3.92), уровни гармонического осциллятора эквидис-тантны, и интервал между.ними равен $IMAGE55$.

3.5.10. Продолжая исследование лесенки уровней, учтем, что сверху она неограничена, но нижняя граница определена уровнем основного состояния Ψ0, ниже которого не существует состояний системы. Поэтому попытка подействовать оператором понижения $IMAGE41$ на волновую функцию основного состояния должна дать нулевой результат, т.е. применительно к волновой функции основного уровня оператор понижения сыграет роль ее “уничтожителя” – аннигилятора:

$IMAGE57$                                          (3.93)

Здесь целесообразно вернуться к переменной х. С учетом выражения для $IMAGE41$(3.80) и  подстановки (3.74а) формулу (3.93) после простых преобразований приводим к дифференциальному уравнению для $IMAGE59$:

$IMAGE60$,            (3.94)

при интегрировании которого получим волновую функцию основного состояния:

$IMAGE61$.                      (3.95)

Далее находим нормировочный множитель А0:

$IMAGE62$                  (3.96)

$IMAGE63$.                                         (3.97)

При раскрытии выражения (3.96) использован интеграл Пуассона:

$IMAGE64$.

3.5.11. Волновая функция $IMAGE65$ является собственной функцией гамильто-ниана. Поэтому для расчета основного уровня достаточно подействовать по-следним на $IMAGE65$ и определить собственное значение

$IMAGE67$        (3.98)

Энергия искомого основного уровня равна $IMAGE68$.                    (3.99)

Последовательными сдвигами на $IMAGE55$ вверх, согласно уравнению (3.92), получается вся лесенка энергетических уровней, и схема квантования энергии осциллятора передается формулой:

$IMAGE70$            (3.100)

3.5.12. Оператор повышения $IMAGE27$ позволяет получить весь спектр волновых функций из $IMAGE65$. Если υ раз подействовать оператором $IMAGE27$ на $IMAGE65$, то получится $IMAGE75$ с точностью до постоянного множителя. Иными словами, генератор волновой функции υ-го состояния – это оператор повышения, возведенный в степень υ:

$IMAGE76$ .        (3.101)

Напомним, что любое преобразование волновой функции, в общем случае, порождает необходимость новой нормировки.

3.5.13. Обсудим вид волновых функций осциллятора. Для этого удобно произвести еще одно упрощение за счет замены переменной путем подстановки:

$IMAGE77$,                           (3.102)

благодаря чему $IMAGE78$ и оператор повышения $IMAGE79$, необходимый для полу-чения $IMAGE80$, примут вид:

$IMAGE81$,                               (3.103)

$IMAGE82$.                          (3.104)

Постоянный коэффициент в выражении (3.104) ие играет роли, так как к функции Ψυ , генерируемой по формуле (3.105), он добавляет лишь множитель $IMAGE83$, который далее автоматически входит в состав нормировочного множителя Аυ, и поэтому Ψυ передается формулой:

$IMAGE84$                      (3.105)

Оператор $IMAGE85$ представляет собой бином, составленный из степеней переменной s и оператора дифференцирования $IMAGE86$, который в свою очередь извлекает из гауссовой экспоненты $IMAGE87$ степенные множители, в результате выражение (3.105) преобразуется к виду:

$IMAGE88$ ,                      (3.106)

где $IMAGE89$ – многочлен степени υ, называемый полиномом Эрмита. Нетрудно убедиться, что эти полиномы можно представить выражением, которое легко запоминается, благодаря своей симметричности:

$IMAGE90$.                       (3.107)

Последовательно придавая υ значения 0, 1, 2, 3 …, читатель легко может вывести формулы полиномов Эрмита разных порядков.  Для того, чтобы читатель смог проверить свои расчеты, приведем в табл.2 несколько первых полиномов Эрмита вместе с их корнями и графиками. В табл.2 также изображены графики ненормированных волновых функций

     $IMAGE80$ =. $IMAGE92$

 У волновых функций имеется один и тот же множитель – экспонента $IMAGE87$; эта быстро спадающая к нулю функция при удалении от начала координат “прижимает” к оси абсцисс расходящиеся было ветви полиномов. В результате получается картина, очень напоминающая поведение волновых функции “ящика”.

Табл.2.

Полиномы Эрмита и волновые функции гармонияеского 

осциллятора

 υ

$IMAGE89$

Корни полиномов Графики полиномов

Графики волновых функций $IMAGE80$.

0 1 -

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Химия | Добавил: Lerka
Просмотров: 204 | Загрузок: 1 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Понедельник
25 Ноя 2024
11:05


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz