Пятница, 31 Янв 2025, 06:02
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 11
Гостей: 11
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Химия

Активация малых молекул


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
01 Окт 2013, 16:01

Активация малых молекул

1. Введение

В катализе часто применяют термин “активация”, понимая при этом повышение реакционной способности реагентов. Попытаемся наполнить этот термин конкретным физическим содержанием. Под активацией субстрата будем понимать степень и характер воздействия катализатора на субстрат, приводящих к превращению первичного комплекса в промежуточное соединение, содержащее в координационной сфере реакционноспособные фрагменты субстрата. Анализ имеющихся данных о влиянии координации на физические свойства лигандов и о реакциях координированных лигандов позволяет понять наиболее существенные черты механизма активации каждой молекулы.

Рассмотрим современные представления о механизме активации простых молекул комплексами переходных металлов. Механизмы активации молекул различного типа кислотными катализаторами рассмотрены ранее.

Сущность активации заключается в изменении определенных характеристик субстратов при образовании первичного комплекса с катализатором.

Кат-р + субстрат ® Х1 ® Х2 ….. ® Хn ® P + K

При образовании первичного комплекса возможны три варианта

Образуется очень прочный комплекс между субстратом и катализатором. Субстрат в таком комплексе оказывается менее реакционноспособным, чем в свободном виде.

В первичном комплексе происходит изменение характеристик субстрата в желательном направлении: изменение валентных углов, понижение частоты валентных колебаний и удлинение связей. Реакционная способность увеличивается.

При комплексообразовании происходит расщепление субстрата на фрагменты, часть которых или все могут оказаться в координационной сфере комплекса.

Второй и третий случаи называют активацией за счет координации и активацией за счет присоединения, соответственно.


2. Активация молекулы водорода

Проблема активации этой молекулы важна т.к. водород один из основных реагентов НХС и ООС (гидрообработка, гидрогенолиз, гидрирование ненасыщенных соединений, синтезы из синтез-газа).

Молекула Н2 – слабый донор (IH2= 15,4 эВ) и слабый акцептор (FH2= -0,7 эВ).

Рассмотрим возможности активации этой молекулы с точки зрения теории МО.

Н


Энергия диссоциации связи Н-Н зависит от заселенности орбиталей электронами (табл. 1).


Таблица 1

Энергия диссоциации связи Н-Н в зависимости от заселенности орбиталей

Частица ЕD, кДж/моль LH-H, Å
Н2 430,5 0,74
Н2+ 259,2 1,07
Н2 - 17,14 0,86

Из приведенной таблицы следует, что есть два пути активации водорода: а) уменьшение заселенности связывающей орбитали, б) увеличение заселенности разрыхляющей орбитали.


Хотя сродство Н2 к Н+ довольно велико (в газовой фазе DНО = -322кДж/моль) активация протоном молекулы Н2 (вариант а) оказалась возможной только в растворе суперкислоты SbF5-HF в апротонных средах (SO2, SO2ClF ), cудя по реакциям дейтерообмена. Вариант (б) оказался более простым. Активация водорода легко осуществляется основаниями (ОН-, КNH2, К). Промотирование электронов на разрыхляющую орбиталь водорода является решающим фактором активации (К+Н2-).

Первичные комплексы для водорода были получены примерно в 1980 г. Первым из них был (CO)3W(P i-Pr3)2(h2-H2). Структура комплекса представляет собой октаэдр с молекулой водорода, занимающей одно координационное место в экваториальной плоскости вместе с тремя карбонилами. Длина связи Н-Н составляет 0,84 Å (сравни с табл 1). В аналогичном комплексе иридия Ir(H)2(h2-H2)[P(C6H11)3]2 наблюдается быстрый обмен между координированным молекулярным водородом и гидридными лигандами. Однако в этих комплексах координирована молекула водорода и ее активация сводится лишь к удлинению связи H-H.

В большинстве случаев взаимодействие водорода с комплексами переходных металлов приводит к разрыву связи в молекуле водорода. При этом возможны два основных направления превращения водорода при взаимодействии с комплексами переходных металлов.

В случае комплексов металлов в высоких степенях окисления с преобладанием акцепторных свойств происходит гетеролитический разрыв связи в водороде (электрофильное замещение Н+ на комплекс металла).

Cu2+ + H2 ® CuH+ + H+

PtCl2 + H2 ® ClPtH + HCl

RuCl63- + H2 ® H RuCl53- + HCl

Комплексы металлов в низших степенях окисления, имеющие возможность повысить степень окисления и координационное число, ведут к гомолитическому расщеплению связи Н-Н. В этом случае дативная компонента связи преобладает над донорно-акцепторной.

IrCl(CO)L2 + H2 ® (H)2 IrCl(CO)L2

Co2(CO)8 + H2 ® 2 HCo(CO)4

2 Co(CN)53-+ H2 ® 2 HCo(CN)53-

В любом из перечисленных вариантов образуются гидридные комплексы переходных металлов. Комплексы такого типа предполагаются в качестве катализаторов и интермедиатов многих процессов с участием водорода.


4. Активация молекулы монооксида углерода

Гетероатомная молекула оксида углерода имеет очень большую энергию связи 256 кКал/моль. Она слабый донор и сильный p-акцептор (акцептирует на разрыхляющие орбитали). Относительное расположение молекулярных орбиталей для СО имеет особенность. Pz уровень в атоме кислорода расположен ниже, чем соответствующий. уровень для атома углерода (из-за большего заряда ядра), поэтому он (Pz уровень в атоме О) сильно взаимодействует с 2s–орбиталью атома углерода. В связи с этим Pz–молекулярная орбиталь СО располагается выше, чем вырожденные Pх и Pу орбитали (см. диаграмму). Пара электронов, которая располагается на Pz орбитали, является несвязывающей и локализована на атоме углерода, а пара электронов на 2s–орбитали - также несвязывающая и локализована на атоме кислорода. Причем, Pz – молекулярная орбиталь имеет в основном р-характер с большим лепестком, вытянутым от связи С-О. Вакантные орбитали (Pz*, Pх*, Pу*) также локализованы на атоме углерода, поэтому практически во всех случаях оксид углерода координируется через углерод.

$IMAGE6$

С

Диаграмма относительного расположения молекулярных орбиталей в молекуле СО


За счет заполненной Pz-орбитали, локализованной на углероде, СО обладает слабыми донорными свойствами и образует донорно-акцепторную компоненту связи, взаимодействуя с подходящей по симметрии вакантной орбиталью dz2 переходного металла. За счет вакантных разрыхляющих Px и Py орбиталей у СО есть возможность проявлять акцепторные свойства. Две разрыхляющие p-орбитали по симметрии могут взаимодействовать с заселенными dxy и dxz орбиталями переходного металла.

Из всего вышесказанного следует, что СО является s-лигандом, но в подавляющем большинстве случаев его следует рассматривать одновременно как s-донор и p-акцептор с преобладанием акцепторных свойств.

Карбонильные комплексы известны для большинства переходных металлов. Первые комплексы были получены в конце 19-го века. Например [Pd(CO)X]n, [Pt(CO)X]n, Co2(CO)8, Ni(CO)4. Координация оксида углерода в комплексах бывает концевая (терминальная) и мостиковая (с участием двух атомов металла или трех атомов металла).

$IMAGE7$

Первый тип координации является концевым и реализован во многих моно- и полиядерных комплексах, например в тетраэдрическом моноядерном тетракарбониле никеля или биядерном дикобальтоктакарбониле.

Следующие типы координации - симметричная и несимметричная мостиковая (µ- и µ3-тип) - широко распространены в химии кластеров.

Так, в кластере состава

$IMAGE8$

Pd4(CO)4(OAc)4 имеются только µ-СО-группы. В кластере [Pt3(CO)6]2-n наблюдаются два типа координации СО – и концевые, и мостиковые лиганды СО, причем в каждом металлотреугольнике Pt3 представлены по три лиганда обоих типов координации.

Примеры мостиковой координации СО-группы по µ- и µ3-типу реализуются в анионном гетероядерном комплексе состава Na2{Pd4[CpMo(CO)3]4}. Здесь на каждом металлотреугольнике Pd2Mo одна СО-группа координирована по µ3-типу, а две другие – по µ-типу по ребрам Pd-Mo, причем последние СО-группы слегка асимметричные (связь Mo-C короче связи Pd-C).

$IMAGE9$

Pd4[CpMo(CO)3]42-

Следует добавить, что при терминальной координации карбонил является донором 2 электронов. Эта же донорная способность сохраняется в том случае, если СО координирован мостиком, но при этом направление связи С-О остается перпендикулярным ребру (или грани), на которой он координирован. В противном случае в связь с металлом начинают включаться электроны кратной связи и атома кислорода.

Как уже отмечалось выше, координация СО по обоим атомам возможна, хотя и встречается относительно редко. При такой координации происходит значительное удлинение связи С-О (от 1.13 до 1.30 А). Примеры такой координации приведены ниже.

$IMAGE10$

Если в образовании связи металл-лиганд участвуют оба атома, то СО-группа является донором 4 электронов. В случае, когда молекула СО расположена параллельно плоскости М3-цикла, она становится донором 6 электронов.

И, наконец, линейная координация СО отмечена в металлоорганических соединениях металлов начала больших периодов периодической системы:

(CO)5V-C-O-V-O-C-V(CO)5 или (η5-С5Me5)(Me)Ti-O-C-Mo(CO)3Cp

$IMAGE11$ Координационная связь между СО и переходным металлом складывается из двух компонент – донорноакцепторной ( СО – донор, металл – акцептор за счет вакантных орбиталей, например, dz2 и dx2-y2 для октаэдрических комплексов) и дативной ( металл – донор за счет заполненных dxy, dxz, dyz, СО – акцептор за счет вакантных орбиталей. Обе компоненты способствуют ослаблению связи С – О. В зависимости от степени заселения разрыхляющих орбиталей СО происходит большее или меньшее увеличение длины, понижение частоты валентных колебаний и уменьшение энергии связи С – О ( табл.)

Молекула или ион Энергия связи С-О, кКал/моль Частота валентных колебаний, см-1 Длина связи С-О, Å
СО (некоорд. молекула) 256 2143 1,128
СО+ 2214 1,115
СО (коорд. концев.)

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Химия | Добавил: Lerka
Просмотров: 184 | Загрузок: 2 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Пятница
31 Янв 2025
06:02


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz