Понедельник, 13 Янв 2025, 09:19
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51656


Онлайн всего: 6
Гостей: 6
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » География

Геодинамика докембрийской земной коры


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
05 Янв 2013, 23:03

Можно ли восстановить изменение температуры и давления магматических пород при их подъеме к поверхности Земли?

Каковы причины погружения на большие глубины метаморфических пород?

Почему после разогрева и уплотнения они возвращаются к поверхности Земли?

Есть ли возможность объяснить это явление с точки зрения физической геологии?

Закономерное изменение температуры и давления в эволюционном преобразовании горных пород характеризуется PT-трендами, отражающими не только термальную историю кристаллических горных пород, но также их крупномасштабные перемещения в гравитационном поле Земли. Численное моделирование этого процесса при термодинамических условиях земной коры и верхней мантии Земли показывает, что эти перемещения подчиняются законам гидродинамики и нередко протекают по механизму цепных реакций.

Введение

Распределение элементов между сосуществующими минералами и основанные на них геотермометры и геобарометры позволяют с достаточно высокой точностью определять температуру (Т) и давление (Р) образования кристаллических горных пород [1]. Они позволяют заглянуть в прошлое, на миллионы и миллиарды лет назад и узнать как возникали и изменялись (эволюционировали) кристаллические породы. Свидетели этой эволюции - сосуществующие (локально равновесные) минералы переменного состава. Обладая диффузионной и ростовой зональностью, они подобно магнитофонной ленте сохраняют запись об изменении температуры и давления.

Кристаллические породы сложены преимущественно силикатами [1, 2] и представлены двумя разновидностями - магматическими и метаморфическими. Первые - это продукты кристаллизации магматических расплавов, возникающим на разных глубинах вследствие плавления пород земной коры и верхней мантии [2]. Плавление сопровождается снижением плотности вещества и приводит к подъему магм на более высокие горизонты . Степень раскристаллизации магмы зависит от скорости ее охлаждения и вязкости. Чем ниже вязкость, тем выше скорость кристаллизации. Помимо температурной и барической зависимости, вязкость есть также функция содержания SiO2 и флюидных (газовых) компонентов в магме. Чем меньше в ней концентрация SiO2, чем она богаче флюидами (особенно водой) и чем ниже скорость ее охлаждения, тем более крупнокристаллические породы возникают при ее кристаллизации [1, 2]. Полнокристаллические, интрузивные породы обычно формируются на глубинах более одного километра. При излиянии магмы (лавы) на поверхность Земли образуются вулканические породы. В них наряду с кристаллами в том или ином количестве содержится аморфная фаза - вулканическое стекло. Метаморфические породы образуются в основном при глубокой твердофазовой перекристаллизации первичных пород любого состава под воздействием флюидно-тепловых потоков, восходящих из мантии Земли. Степень перекристаллизации во многом определяется температурой и давлением. Давление определяется нагрузкой вышележащих пород. Чем выше эти параметры, тем более глубокую переработку испытывают первичные породы. Следовательно, чем глубже погрузилась порода, чем выше температура окружающей среды, тем сильнее степень метаморфизма. Поразительно, но консолидированные массы таких высокометаморфизованных пород вновь появляются на поверхности Земли, обнажаясь на огромных пространствах континентов и даже в морских континентальных окраинах (например, Японское и Южно-Китайское моря). Иногда эти породы испытывают повторный метаморфизм, т.е. вновь погружаются и поднимаются к поверхности. Об этом свидетельствуют повторно метаморфизованные породы, содержащие продукты более раннего метаморфизма.

Существует несколько альтернативных моделей погружения огромных масс пород на большие глубины. Например, сжатие толщ в процессе горообразования (орогенеза). В результате земная кора в зоне орогенеза становится почти вдвое толще и нагрузка в ее основании возрастает вдвое. Под орогенными системами возникают так называемые корни гор - прогибы поверхности Мохоровичича (Мохо) - границы коры с мантией Земли. Другими словами, горные массивы напоминают гигантские корабли, осевшие в результате перегрузки ниже ватерлинии. Разгрузка приводит к относительному всплыванию такого судна, так что ватерлиния может оказаться выше уровня воды. Аналогично действует механизм эрозии. Как и в случае разгрузки корабля, эрозия, т.е. выветривание и размыв горных систем, приводит к сносу материала во внутриконтинентальные или морские впадины. Земная кора в бывших зонах орогенеза становится тоньше, корни гор исчезают и поверхность Мохо выравнивается. В результате на поверхности обнажаются все более глубокие горизонты земной коры. Достаточно ясный принцип эрозионного механизма вызывает, однако, ряд вопросов, ответить на которые далеко не просто:

1. Почему количество относительно молодого осадочного материла - продукта эрозии - на любом континенте очень редко превышает 1/5 объема пород, который должен быть снесен с более древних гор? Например, в ЮАР широко распространены так называемые зеленокаменные пояса - ранне-архейские вулканогенно-осадочные комплексы. Они были метаморфизованы около 3.5 миллиардов лет тому назад при температуре не более 500 0С. На глубинах около 12 км они прорываются более молодыми (~2.6 млрд. лет) породами (гранулитами) комплекса Лимпопо, метаморфизованными при 850 0С на глубине более 25 км. Своими корнями комплекс Лимпопо уходит до границы Мохо (глубина около 40 км). Площадь этого комплекса более 10 000 км2. По эрозионной модели размыв 250 000 км3 гранулитов Лимпопо должен был привести к накоплению осадочных пород того же объема. Более молодой осадочный комплекс (Трансвааль) действительно известен к югу от гранулитового пояса Лимпопо. Но объем этих осадков не превышает 50 000 км3, что составляет около 20% эродированных пород. Причем снесены они в древнюю внутриконтинентальную впадину не только с орогена Лимпопо.

2. Мощность коры современных континентов варьируют в среднем между 35 и 45 км. Между тем на поверхности Земли обнажаются породы, которые 2.5 - 2 млрд. лет тому назад были метаморфизованы на глубине 30-40 км. Если эрозия привела к утонению коры на эти 30-40 км, логично допустить, что мощность коры в докембрии была 65-75 км, и в силу существования геотермического градиента в ее основании находились (и сейчас находятся) еще более глубоко метаморфизованные породы. Почему же они никогда не встречаются в виде ксенолитов (захваченных пород), вынесенных базальтами и кимберлитами из глубинных частей континентальной коры?

Как решить эти и подобные геодинамические задачи? И можно ли вообще ответить на эти вопросы? Геотермобарометрия оказалась едва ли не единственным эффективным инструментом для корректного решения задачи. Мы постараемся показать ее "геодинамическую эффективность" на примерах эволюции (1) магматических пород верхней мантии Земли и (2) коровых метаморфических комплексов.

Эволюция магматических пород в верхней мантии Земли

Содержание в кремнезема, SiO2, в магматических горных породах - основа их классификации:

Группа пород Содержание SiO2 мас. %
кислые (граниты, гранодиориты, дациты и др.) ~ 62
средние (диориты, андезиты) ~ 58
основные (габбро, долериты, базальты и др.) ~52
ультраосновные (дуниты, лерцолиты, коматииты и др.) ~42

Имеются сведения о реологии различных магматических расплавов, из которых эти породы образовались. Их природа, распространенность и некоторые физические свойства изложены в работе В.С.Попова [2]. Продуктами кристаллизации силикатных расплавов сложена почти вся земная кора под океанами и значительная часть континентальной коры. Широкая распространенность магматических пород на поверхности Земли позволяет собрать практически любое количество образцов горных пород, которое необходимо для достаточно точной диагностики условий их кристаллизации. В этом разделе, однако, мы рассмотрим эволюцию пород, раскристаллизованных в верхней мантии Земли. Этот объект исследования наиболее полно раскрывает возможности минералогической термобарометрии [1] для познания истории формирования глубинных магматических пород. Напомним лишь, что большинство расплавов основного и ультраосновного состава зарождается в верхней мантии Земли.

В отличие от коровых, интрузивные породы верхней мантии менее доступны для непосредственного изучения. Кроме того они содержат слабо зональные минералы, затрудняющие анализ изменения РТ-параметров в каждом конкретном образце. Однако сами минеральные ассоциации весьма точно отражают термодинамическую обстановку, характерную для того участка верхней мантии, из которого образец этой породы был "отобран". Это слово заключено в кавычки, поскольку не существует возможности отбирать образцы непосредственно из верхней мантии. Но они попадают на дневную поверхность благодаря излияниям мантийных магм. В таких магмах могут содержаться ксенолиты - твердые мантийные породы, захваченные и вынесенные на земную поверхность более поздними и более глубинными мантийными расплавами . С другой стороны, в самих мантийных магмах кристаллизация минералов могла начаться в условиях верхней мантии, а завершиться уже в земной коре (для таких магм применяется термин "интрателлурическая кристаллизация") или же на ее поверхности. В обоих случаях эволюция РТ-параметров "записывается" равновесиями минералов, слагающих эти горные породы. Остановимся на этом вопросе более подробно.

1.Мантийные ксенолиты выносятся на поверхность кимберлитовыми или базальтовыми магмами повышенной щелочности. Скорости их подъема достаточно высоки, поскольку такие магмы обладают относительно низкой плотностью и вязкостью. Действительно, эксперименты показывают, что скорость подъема кимберлитовых магм может достигать 40 км/час. Это значит, что вынос алмазоносных мантийных ксенолитов с глубин порядка 120-140 км (алмаз стабилен выше 40 000 тыс. атм.) осуществляется всего за 3-4 часа. Этого времени явно недостаточно, чтобы ксенолиты прореагировали с несущей их магмой или же претерпели изменения фазового состава в результате изменения Т и Р. Поэтому с помощью минералогических термометров и барометров можно оценить РТ-параметры формирования ксенолитов мантийных пород.

На рис. 1 приведены РТ-тренды остывания магматических пород в верхней мантии Земли. Они основаны на достаточно представительной коллекции свежих крупнокристаллических ксенолитов гранатовых лерцолитов (Grt+Cpx+Opx+Spl Ol) из алмазоносных кимберлитовых трубок Сибирской платформы (Россия) и Южной Африки [4, стр.207]. На рис. 1 линия, проведенная по точкам 5, достаточно четко определяет изменение температуры с давлением (глубиной). Более того, она почти совпадает с теоретической геотермой под континентами до глубины около 250 км. Иными словами, ксенолиты 5, подобно "черному ящику", записали информацию о той физико-химической обстановке, в которой составы слагающих их минералов окончательно достигли равновесных соотношений в мантии. И лишь значительно позже они были вынесены кимберлитовыми магмами почти на дневную поверхность. Весь их путь от места захвата кимберлитовой магмой до поверхности Земли не отмечен изменением составов сосуществующих минералов и, следовательно, снижением ТР-параметров их равновесий.

Рис. 1. РТ - тренды остывания глубинных магматических расплавов и твердых горных пород в верхней мантии Земли и земной коре.

Вместе с тем, в некоторых ксенолитах из кимберлитовых трубок Южной Африки наблюдается иная картина. Представленные на рис. 1 тренды 1 и 2 отражают условия кристаллизации гранатовых лерцолитов, которые в отличие от описанных выше (тренд 4 на рис.1) заметно деформированы и имеют порфировидную структуру - следы быстрого охлаждения в динамических условиях. Не исключено, что гранатовые лерцолиты представляют собой продукты кристаллизации еще более глубинных и очень высокотемпературных магм (Т > 1800 0С) магм, внедрившихся в породы верхней мантии на уровне 150-180 км. Согласно рис. 1 (геотерма 4) на этой глубине температура пород верхней мантии составляет около 1100 -1150 0С. Следовательно, градиент температуры в 650-700 0С, возникший между внедрившейся лерцолитовой магмой и вмещающими породами мантии обеспечивает быстрое ее охлаждение, почти закалку. Это и проявилось в образовании порфировидных структур гранатовых лерцолитов. Быстрое их остывание вдоль трендов 1 и 2 при Р >> const уровня нормального РТ-градиента 4 на рис.1 привело к возникновению химической зональности в минералах переменного состава. Зональность отражает смещение химических равновесий в ходе субизобарического (P>>const) остывания. Скорость такого охлаждения во многом обусловлена местонахождением образца в глубинном интрузивном теле. Чем ближе образец к контакту, тем выше скорость его охлаждения. Из сопоставления трендов 1 и 2 с трендом 4 на рис.1 можно заключить, что деформированные гранатовые лерцолиты недолго пребывали в верхней мантии. Едва достигнув геотермы 4 (рис.1) на глубине 150-180 км, они были захвачены и вынесены в земную кору кимберлитовыми магмами.

2. Близкую по смыслу к трендам 1 и 2 информацию несут ультраосновные и основные магматические расплавы 3 (рис.1), внедрившиеся в континентальную кору и окончательно в ней сформировавшиеся. Кристаллизация минералов (в том ч

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: География | Добавил: andre8
Просмотров: 199 | Загрузок: 2 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Понедельник
13 Янв 2025
09:19


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz