Вторник, 12 Авг 2025, 05:49
Uchi.ucoz.ru
Меню сайта
Форма входа
Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51667


Онлайн всего: 1
Гостей: 1
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Физика

Теплоёмкость. Термодинамические процессы с идеальным газом


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
28 Май 2013, 00:35

Теплоёмкость.

Краткая теоретическая часть

Отношение теплоты δq, полученной единицей количества вещества к изменению температуры dt называют удельной теплоемкостью.

(1.1)

Поскольку количество теплоты δq зависит от характера процесса, то и теплоемкость системы CX также зависит от условий протекания процесса.

Теплоемкость в зависимости от количества вещества может быть массовой – С, объемной – С' и мольной µC. Связь между ними:

(1.2)

Физический смысл теплоемкостей идеального вещества при V = const и P = const следует из рассмотрения дифференциальных соотношений термодинамики вида:

(1.3)

После соответствующих преобразований с учётом свойств идеального газа получим:

(1.4)

Это свидетельствует о том, что изменения внутренней энергии и энтальпии определяются как:

(1.5)

т.е. независимо от характера процесса.

Соотношения между CP и CV:

$IMAGE6$(1.6)

В соответствии с молекулярно-кинетической теорией газов мольная теплоемкость при V = Const пропорциональна числу их степеней свободы, выраженному в джоулевом эквиваленте и для одного моля газа равна µСV = 3 × 4,19 = 12,5 Дж/(моль×К). Тогда в соответствии с законом Майера, µСP = 5 × 4,19 = 20,8 Дж/(моль×К), что позволяет в зависимости от атомности газа и их степеней свободы представить значения мольных теплоёмкостей в следующем виде:

Таблица № 1.1.

Атомность газа μCV μCP
Дж/(моль×К) кал/(моль×К) Дж/(моль×К) кал/(моль×К)
одноатомный 12,5 3 20,8 5
двухатомный 20,8 5 29,1 7
трёх - и более атомный 29,1 7 37,4 9

Теплоемкость, определяемая по уравнению (4.1) при заданных параметрах состояния (P, v, Т) называемая истинной и может быть выражена как:

CX = CX0 + ΔCX,(1.7)

где СX0 – теплоемкость газа в разряженном состоянии (при P " 0) и зависит только от температуры, а ΔСX – определяет зависимость теплоемкости от давления и объема.

Средняя теплоемкость СXm в интервале температур от T1 до T2 выражается как:

$IMAGE7$(1.8)

Если принять что один из пределов, например T1 = 273,15 К, то можно рассчитать средние теплоемкости газов в интервале температур от t1 = 0 °C до t2 = х °C и представить их значения в табличной форме, см. приложение, таблицы №2 – №4.

Количество теплоты, передаваемое системе согласно уравнению (4.8) и используя данные теплоемкостей, таблицы №2 – №4, с учетом (4.2), в зависимости от процесса рассчитывается по формулам:

$IMAGE8$(1.9)

Для приближенных расчетов количества теплоты при не очень высоких температурах можно принять C = Const и тогда уравнения (1.14) с учетом (1.2) – (1.4) и значений таблицы №4.1. будут иметь вид:

$IMAGE9$(1.15)

Задачи для самостоятельного решения.

Задача № 1-1. Воздух имеющий объем V = 15 м3 при температуре t1 = = 1500 °C и давлении Р = 760 ммHg, охлаждается изобарически до температуры t2 = 250 °C. Определить отводимое тепло QP, если: а) считать теплоемкость постоянной, б) использовать формулу µСP = 6,949 + + 0,000576×t.

Задача № 1-2. Расход воздуха измеряется с помощью электрического нагревателя, установленного в воздухопроводе. Температура воздуха перед нагревателем и за ним измеряется с помощью двух термометров. Определить часовой расход воздуха G кг/ч, если при включении электрического нагревателя мощностью 0,75 кВт температура воздуха перед нагревателем Т1 = 288 К, а за нагревателем Т2 = 291,1 К. Определить также скорость потока воздуха за нагревателем, если давление его (принимаемое нами неизменным) Р = 870 ммHg, а диаметр воздухопровода d = 90 мм.

Задача № 1-3. В результате полного сгорания углерода в атмосфере чистого кислорода в сосуде образовался углекислый газ СО2 при давлении Р = 6,04 бар и температуре Т1 = 1673 К. Какое количество тепла выделится при остывании СО2 до температуры Т2 = 293 К. Определить также, какое давление установиться при этом в сосуде и какое давление имел кислород в сосуде до сгорания, если температура его равнялась 10 °C. Объем сосуда принять неизменным и равным 5 литров.

Задача № 1-4. Найти количество тепла, необходимое для нагревания 1 нм3 газовой смеси состава τ(CO2) = 14,5%; τ(O2) = 6,5%; τ(N2) = 79,0% от 200 до 1200 °C при P = Const и нелинейной зависимости теплоемкости от температуры.

Пример. Воздух в количестве 6 м3 при давлении Р1 = 3 бар и температуре t1 = 25 °C нагревается в процессе P = Const до t2 = 130 °C. Определить количество подведенного тепла, считая С = Const и С = f(T).

Решение.

QP = m × CP × (t2 – t1) = VН × C'P × (t2 – t1);

QP = m × (CPm × t2 – CPm × t1) = VН × (C'Pm × t2 – C'Pm × t1).

m = (Р1 × V1 × µ) /(R × T1) = (3×105 × 6 × 2,896×10–2) /(8,314 × 298,15) = 21,03 кг.

VН = (Р1 × V1 × TН) /(РН × T1) = (3×105 × 6 × 273,15) /(101325 Па × 298,15) = 16,28 нм3.

QP = 21,03 × (29,33/2,896 × 10–2) × (130 – 25) = 16,28 × (29,33/2,24 × 10–2) × (130 – 25) = 2236,4 кДж.

QP = 21,03 кг × (1,0079 × 130 – 1,0042 × 25) = 16,28 × (1,3026 × 130 – 1,298 × 25) = 2227,5 кДж.

Расхождение 0,40%.

Задача № 1-5. В закрытом сосуде ёмкостью V = 0,5 м5 содержится диоксид углерода при Р = 6 бар и Т = 800 К. Как изменится давление газа, если от него отнять 100 ккал? Принять зависимость C = f(T) линейной.

Задача № 1-6. Сосуд емкостью 90 л содержит воздух при давлении 8 бар и температуре 303 К. Определить количество тепла, которое необходимо сообщить воздуху, чтобы повысить его давление при V = Const до 16 бар. Принять зависимость C = f(T) нелинейной. Ответ дать в ккал.

Задача № 1-7. Какое количество тепла необходимо затратить, чтобы нагреть 2 м3 воздуха при постоянном избыточном давлении РМ = 2 бар от t1 = 100 °C до t2 = 500 °C? какую работу при этом совершит воздух? Давление воздуха по барометру принять равным 760 ммHg.

Задача № 1-8. При изобарическом нагревании от Т1 = 313 К до Т2 = 1023 К однородный газ совершает работу l = 184 кДж/кг. Определить, какой это газ, какое количество тепла ему сообщено и как при этом изменилось его давление.

Задача № 1-9. В процессе подвода тепла при постоянном давлении температура 0,9 нм3 азота повышается от Т1 = 288 К до Т2 = 1873 К. Определить изменения энтальпии азота и долю тепла, пошедшую на увеличение внутренней энергии.

Задача № 1-10. В цилиндре с подвижным поршнем заключен кислород в количестве VН = 0,3 нм3 при Т1 = 318 К и Р1 = 776 ммHg. Некоторое количество тепла сообщается кислороду при Р = Const, а затем производится охлаждение до начальной температуры (318 К) при V = Const. Определить количество подведенного тепла, изменения энтальпии, внутренней энергии и произведенную работу для обоих процессов, если известно, что в конце изохорического охлаждения давление кислорода Р3 = 0,588 бар. Изобразите состояния газа в P – V и T – S координатах.


Термодинамические процессы с идеальным газом.

Краткая теоретическая часть

Под термодинамическим процессом понимается взаимодействие ТС с окружающей средой, в результате которого ТС переводится из определенного начального состояния в определенное конечное состояние.

Если ТС, в которой протекает процесс, можно вернуть в начальное состояние так, что во внешней среде не произойдет каких либо изменений, то процесс называется обратимым. Если начальное состояние ТС без изменений во внешней среде невосстановимо, то процесс называется необратимым.

Только обратимые процессы могут быть изображены графически на диаграммах состояния, так как на них каждая точка представляет равновесное состояние.

Принцип сохранения энергии, сформулированный первым законом термодинамики (формулы (2.1) – (2.3)), приводит в конечном счете к энергетическому балансу, связывающему изменение запаса энергии ТС (внутренней энергии) с энергией, переходящей границы системы при совершении процесса в форме работы или теплоты.

Группа процессов, являющаяся при определенных условиях обобщающей для всех процессов и характеризующаяся постоянством теплоемкости называются политропными.

Для всех процессов устанавливается общий метод исследования, заключающийся в следующем:

· выводится уравнение процесса;

· устанавливается зависимость между основными параметрами состояния ТС;

· определяется теплоемкость процесса;

· определяются изменения функций состояния: внутренней энергии, энтальпии, энтропии;

· вычисляются функции процесса: теплота и работа;

· дается графическая интерпретация термодинамических процессов в P – V и T – S координатах.

Рассматриваемые процессы считаются обратимыми.

Основные соотношения согласно пунктам 1 – 5 даны в таблицах № 2.1 – № 2.3.

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Физика | Добавил: Lerka
Просмотров: 343 | Загрузок: 5 | Комментарии: 1 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Вторник
12 Авг 2025
05:49


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz