Содержание
Введение
1 Электронно-микроскопический метод исследования
2 Физические основы растровой электронной микроскопии
2.1 Разновидности растрового электронного микроскопа
3 Схема растрового электронного микроскопа, назначение его узлов и их функционирование
4 Подготовка объектов для исследований и особые требования к ним
5 Технические возможности растрового электронного микроскопа
6 Современные виды РЭМ
Заключение
Список литературы
Введение
Быстрое развитие методов исследования и анализа, основанных на использовании электронно-зондового и различных сигналов, излучаемых веществом при взаимодействии с электронами зонда, привело к тому, что техника, которая еще совсем недавно была привилегией отдельных лабораторий, стала общедоступной.
Такое расширение работы в этом направлении было частично обусловлено достижениями в растровой электронной микроскопии и созданием различных приставок для химического рентгеновского анализа с помощью твердотелых детекторов с энергетической дисперсией. В настоящее время многие исследователи располагают мощными техническими средствами, но не имеют соответствующей подготовки для работы с ними. Поскольку эти методы исследования и анализа, применение которых значительно облегчилось благодаря техническому прогрессу и взаимопониманию, достигнутому между конструкторами, основаны на использовании физических процессов, то законы их должны быть познаны, чтобы получать полезные и важные результаты.
Если технический прогресс позволил быстро создать необходимое оборудование, то возникла естественная необходимость найти правильный подход к подробной характеристике материалов, основываясь на новых возможностях метода. Становится все более очевидным, что для характеристики материала недостаточно только химического и гранулометрического анализа. Характеристика требует качественного и количественного описания некоторого числа свойств, особенно на микроуровне (или точнее на нескольких микроуровнях), в соответствии, разумеется, с макроскопическими характеристиками, такими как химический состав и предыстория (термическая или механическая) образца независимо от природы материала (металла, керамики, минерала или полупроводника).
1 Электронно-микроскопический метод исследования
Электронно-микроскопический метод исследования получил широкое распространение в различных областях науки и техники. Электронный микроскоп благодаря высокой разрешающей способности (более чем на два порядка выше по сравнению со световым микроскопом) позволяет наблюдать тонкие особенности и детали структуры микрообъектов на атомно-молекулярном уровне. Эти приборы по своему назначению разделяются на просвечивающие (ПЭМ) и растровые (РЭМ) электронные микроскопы. Первые позволяют изучать образцы в проходящих, а вторые – во вторичных или рассеянных объектом электронах.
Применение просвечивающей электронной микроскопии (ПЭМ) в минералогии началось со времени получения теневых изображений тонкодисперсных частиц глинистых минералов. Начиная с 50-х годов стали появляться работы, посвященные принципам действия, конструкции и техническим возможностям электронных микроскопов [2]. Одновременно разрабатывались различные методы исследования в электронном микроскопе. В настоящее время в комплекс электронно-микроскопических методов входят просвечивающая и растровая электронная микроскопия, микродифракция и электронно-зондовый анализ. С помощью этого комплекса методов решается широкий круг вопросов минералогии. В него входят исследование тонкой микроморфологии минеральных индивидов и агрегатов, определение различных типов точечных дефектов и дислокаций, оценка степени неоднородности минералов, выявление морфологических и структурных соотношений между различными фазами, прямое изучение периодичности и дефектов кристаллических решеток минералов и др.
Растровый электронный микроскоп и рентгеновский микроанализатор это два прибора с большими возможностями, позволяющие на таком уровне наблюдать и изучать неоднородные органические и неорганические материалы и поверхности. В обоих приборах исследуемая область или анализируемый микрообъем облучаются тонко сфокусированным электронным пучком, либо неподвижным, либо разворачиваемым в растр по поверхности образца.
2 Физические основы растровой электронной микроскопии
Принцип действия основан на использовании некоторых эффектов, возникающих при облучении поверхности объектов тонко сфокусированным пучком электронов – зондом. Как показано на рис. 1. в результате взаимодействия электронов 1 с образцом (веществом) 2 генерируются различные сигналы. Основными из них являются поток электронов: отраженных 3, вторичных 4, Оже-электронов 5, поглощенных 6, прошедших через образец 7, а также излучений: катодолюминесцентного 8 и рентгеновского 9.
Рисунок 1. – Эффекты взаимодействия электронного луча с объектом
1 – электронный луч; 2 – объект; 3 – отраженные электроны; 4 – вторичные электроны; 5 – Оже-электроны; 6 – ток поглощенных электронов; 7 – прошедшие электроны; 8 – катодолюминесцентное излучение; 9 – рентгеновское излучение
Для получения изображения поверхности образца используются вторичные, отраженные и поглощённые электроны. Остальные излучения применяются в РЭМ как дополнительные источники информации.
Важнейшей характеристикой любого микроскопа является его разрешающая способность. Она определяется:
- площадью сечения или диаметром зонда;
- контрастом, создаваемым образцом и детекторной системой;
- областью генерации сигнала в образце.
Диаметр зонда в основном зависит от конструктивных особенностей и качества узлов микроскопа и прежде всего электронной оптики. В современных РЭМ достигнуто высокое совершенство компонентов конструкции, что позволило уменьшить диаметр зонда до 5...10 нм.
Влияние контраста на разрешающую способность проявляется в следующем. Формирование контраста в РЭМ определяется разностью детектируемых сигналов от соседних участков образца, чем она больше, тем выше контраст изображения. Контраст зависит от нескольких факторов: топографии поверхности, химического состава объекта, поверхностных локальных магнитных и электрических полей, кристаллографической ориентации элементов структуры. Важнейшими из них являются топографический, зависящий от неровностей поверхности образца, а также композиционный, зависящий от химического состава. Уровень контраста определяется также и эффективностью преобразования падающего на детектор излучения, которое создает сигнал на его выходе. Если получаемый в итоге контраст недостаточен, то его можно повысить, увеличив ток зонда. Однако большой поток электронов в силу особенностей электронной оптики не может быть хорошо сфокусирован, то есть диаметр зонда возрастет и, соответственно, снизится разрешающая способность.
Другой фактор, ограничивающий разрешение, зависит от размеров области генерации сигнала в образце. Схема генерации различных излучений при воздействии электронного пучка на образец представлена на рис. 2. При проникновении первичных электронов в образец они рассеиваются во всех направлениях, поэтому внутри образца происходит расширение пучка электронов. Участок образца, в котором первичные электроны тормозятся до энергии Е=0, имеет грушевидную форму. Боковое расширение электронного пучка в образце в этом случае имеет величину от 1 до 2 мкм, даже когда зонд имеет диаметр 10 нм. Расхождение электронов приводит к тому, что площадь выхода на поверхность образца электронов будет больше фокуса электронного пучка. В связи с этим процессы рассеивания электронов внутри образца оказывают большое влияние на разрешающую способность изображений, получаемых в отраженных, вторичных и поглощенных электронах.
Рисунок 2 – Области сигналов и пространственное разрешение при облучении поверхности объекта потоком электронов (зонд).
Области генерации: 1 – Оже-электронов, 2 – вторичных электронов, 3 – отраженных электронов, 4 – характеристического рентгеновского излучения, 5 – тормозного рентгеновского излучения, 6 – флуоресценции
Отраженные электроны. Они образуются при рассеивании первичных электронов на большие (до 90o) углы в результате однократного упругого рассеивания или в результате многократного рассеивания на малые углы. В конечном итоге первичные электроны, испытав ряд взаимодействий с атомами образца и теряя при этом энергию, изменяют траекторию своего движения и покидают поверхность образца. Размеры области генерации отраженных электронов (рис. 2) значительны и зависят от длины пробега электронов в материале образца. Протяженность области возрастает с увеличением ускоряющего первичные электроны напряжения и уменьшения среднего атомного номера Z элементов, входящих в состав образца. Протяженность области может изменяться от 0,1 до 1 мкм. Электроны, потерявшие в процессе отражения часть энергии, покидают образец на относительно больших расстояниях от места падения электронного зонда. Соответственно сечение, с которого получают сигнал (рис. 2), будет существенно больше сечения зонда. Поэтому разрешение РЭМ в режиме регистрации отраженных электронов небольшое и изменяется от десятков нанометров при работе с невысокими ускоряющими напряжениями и тяжелыми материалами до сотен нанометров при работе с большими ускоряющими напряжениями и легкими материалами.
Важной особенностью эмиссии отраженных электронов является ее зависимость от атомного номера элементов. Если атомный номер атомов материала в точке падения первичного пучка электронов мал (легкие атомы), то образуется меньшее количество отраженных электронов с малым запасом энергии. В областях образца, содержащих высокую концентрацию атомов с большим атомным номером (тяжелые атомы), большее число электронов отражается от этих атомов и на меньшей глубине в образце, поэтому потери энергии при их движении к поверхности меньше. Эти закономерности используются при получении изображений в отраженных электронах.
Вторичные электроны. Первичные электроны, проникающие в образец, взаимодействуют с электронами внешних оболочек атомов объекта, передавая им часть своей энергии. Происходит ионизация атомов образца, а высвобождающиеся в этом случае электроны могут покинуть образец и быть выявлены в виде вторичных электронов. Они характеризуются очень малой энергией до 50 эВ и поэтому выходят из участков образца очень близких к поверхности (рис. 2). Глубина слоя, дающего вторичные электроны, составляет 1...10 нм. В пределах этого слоя рассеивание электронов пренебрежимо мало, и поэтому при получении изображений во вторичных электронах разрешающая способность определяется прежде всего диаметром первичного зонда. Вторичные электроны обеспечивают максимальную в сравнении с другими сигналами разрешающую способность порядка 5...10 нм. Поэтому они являются в РЭМ главным источником информации для получения изображения поверхности объекта, и именно для этого случая приводятся паспортные характеристики прибора. Количество образующихся вторичных электронов слабо зависит от атомного номера элемента. Основным параметром, определяющим выход вторичных электронов, является угол падения пучка первичных электронов на поверхность объекта. Таким образом, вариации наклона микроучастков поверхности вызывают резко выраженные изменения в выходе вторичных электронов. Этот эффект используется для получения информации о топографии поверхности.
С целью увеличения эмиссии вторичных электронов часто образец устанавливается под углом к оси зонда. При этом будет ухудшаться резкость изображения – его размытие по краям. Для ее исправления в РЭМ предусмотрена система компенсации угла наклона. Метод наклона образца применяют при исследовании плоских объектов (металлографических шлифов и др.). Для образцов с сильно развитым рельефом полностью провести коррекцию угла наклона не удается.
В растровом электронном микроскопе наибольший интерес представляют сигналы, создаваемые вторичными и отраженными электронами, поскольку они меняются при изменении топографии поверхности по мере того, как электронный луч сканирует по образцу. Вторичная электронная эмиссия возникает в объеме вблизи области падения пучка, что позволяет получать изображения с относительно высоким разрешением. Объемность изображения возникает за счет большой глубины фокуса растрового электронного микроскопа, а также эффекта оттенения рельефа контраста во вторичных электронах. Возможны и другие типы сигналов, которые оказываются также полезными во многих случаях [3].
Поглощенные электроны. При воздействии зонда часть генерируемых электронов остается в объеме образца (рис. 2). Так, при энергиях первичного пучка 10...20 кэВ примерно 50% от общего числа образующихся вторичных и отраженных электронов достигают поверхности образца и покидают ее. Оставшиеся электроны образуют ток поглощенных электронов (рис. 1). Его величина равна разности между током зонда и токами отраженных и вторичных электронов. Эта разность является сигналом для получения изображения, на которое оказывают влияние как топографический, так и композиционный эффекты.
Поглощенные электроны генерируются в большом объеме (рис. 2). Разрешающая способность при получении изображений в этом случае имеет такой же порядок, как и для отраженных электронов. Данный метод получения изображений используется редко из-за малой разрешающей способности.
электронный растровый микроскопический микроскоп
2.1 Разновидности растрового электронного микроскопа
Отражательный РЭМ.
Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура.
Интенсивность обратного рассеяни