Реферат
по курсу общая электротехника и электроника
На тему:
«Операторный метод расчета переходных процессов в линейных цепях»
Содержание
Введение
1. Применение преобразования Лапласа и его свойств к расчету переходных процессов
2. Переход от изображения к оригиналу. Формулы разложения
3. Законы цепей в операторной форме
4. Эквивалентные операторные схемы замещения
Список литературы
Введение
Электротехника - это наука о техническом (т.е. прикладном) использовании электрических и магнитных явлений. Большое значение электротехники заключается в том, что средствами электротехники
- эффективно получают и передают электроэнергию;
- решают вопросы
· передачи и преобразования сигналов и информации: звук человеческой речи преобразуют в электромагнитные колебания (телефон, радио);
· хранения информации (телеграф, радио, магнитная запись);
- выполняют математические операции: вычислительные машины с огромной скоростью выполняют любые математические операции, в том числе и решение сложных уравнений.
Теоретические основы электротехники заложены физикой (учением об электричестве и магнетизме) и математикой (методами описания и анализа электромагнитных явлений). Наряду с этом развитие электротехники привело к ряду новых физических понятий, новых формулировок физических законов, к развитию специальных математических методов, связанных с описанием и анализом типичных явлений, протекающих именно в электротехнических устройствах.
1 Применение преобразования Лапласа и его свойств к расчету переходных процессов
Этот метод основан на преобразовании Лапласа. Пусть f(t) – оригинал, а F(p) – изображение этого оригинала по Лапласу. Для сокращения применяют такие обозначения: f(t) F(p), F(p)=
Прямое преобразование Лапласа определяется интегралом:
,
Для большого числа функций составлена таблица соответствия изображения и оригинала, кроме того, знание свойств преобразований Лапласа позволяет по небольшому числу выученных изображений находить широкий класс изображений функций.
Основными свойствами являются:
1. Свойство линейности
$IMAGE6$ $IMAGE7$= $IMAGE8$, $IMAGE9$ $IMAGE10$ $IMAGE11$,
2. $IMAGE6$ $IMAGE13$,
3. $IMAGE6$ $IMAGE15$.
Последними двумя свойствами очень удобно решать дифференциальные уравнения.
Смещение аргумента:
- $IMAGE6$ $IMAGE17$,
- $IMAGE6$ $IMAGE19$.
Свертка:
- $IMAGE6$ $IMAGE21$.
Предельные соотношения
Они позволяют не находя всего оригинала по изображению найти значение оригинала при t=0 и t→ ∞.
$IMAGE22$ $IMAGE10$ $IMAGE24$ и $IMAGE25$ $IMAGE10$ $IMAGE27$.
Если известно изображение, то можно перейти к оригиналу одним из трех способов:
1) взять обратное преобразование;
2) взять таблицу;
3) воспользоваться формулами разложения.
Изображение стандартных функций:
1) Ступенчатое воздействие
$IMAGE28$,
$IMAGE29$
$IMAGE30$ $IMAGE10$ $IMAGE32$.
2) Дельта-импульс
$IMAGE33$,
$IMAGE6$ $IMAGE35$ $IMAGE6$ $IMAGE37$
$IMAGE38$ $IMAGE10$ $IMAGE40$.
Если ступенчатая функция и δ-импульс заданы в момент t1 , используя теорему смещения, получают:
$IMAGE6$ $IMAGE42$,
$IMAGE6$ $IMAGE44$.
3) $IMAGE6$ $IMAGE46$
Пусть α=jω, тогда:
$IMAGE47$ $IMAGE10$ $IMAGE49$,
с другой стороны по формулам Эйлера:
$IMAGE50$ $IMAGE10$ $IMAGE52$, $IMAGE53$ $IMAGE10$ $IMAGE55$.
Изображение синусоиды с нулевой начальной фазой:
$IMAGE56$,
$IMAGE57$ $IMAGE10$ $IMAGE59$.
2 Переход от изображения к оригиналу. Формулы разложения
Эти формулы позволяют найти оригинал, если изображение задано дробно-рациональной функцией:
$IMAGE60$
Собственно формулу разложения можно применять только в том случае, когда высшая степень знаменателя выше высшей степени числителя. Если это не так, то сначала нужно поделить числитель на знаменатель, что и позволит привести F(p) к требуемому виду.
Пример:
$IMAGE61$,
$IMAGE62$ $IMAGE10$ $IMAGE64$.
Если m<n, то изображение записывают в виде: $IMAGE65$.
Характеристическое уравнение – выражение F2(p)=0 и, в зависимости от корней в оригинале, появляются соответствующего вида слагаемые, каждое из которых соответствует простейшей дроби.
Чтобы не искать коэффициенты дробей из систем уравнений, пользуются формулами разложения. Они имеют вид:
1) Каждому простому корню характеристического уравнения $IMAGE66$ в оригинале, будет соответствовать слагаемое $IMAGE67$, где $IMAGE68$;
2) Среди корней есть пара комплексно сопряженных: $IMAGE69$, $IMAGE70$. Можно воспользоваться предыдущей формулой для каждого корня, но проверка показывает, что коэффициенты перед exp оказываются к.с.ч. и можно упростить процедуру, записывая ответ сразу для двух корней в виде: $IMAGE71$, где $IMAGE72$ - корень с положительной мнимой частью.
Пример:
$IMAGE73$
$IMAGE74$, $IMAGE75$,
$IMAGE76$, $IMAGE77$
$IMAGE78$, $IMAGE79$.
$IMAGE80$
$IMAGE81$
$IMAGE82$
$IMAGE83$
$IMAGE84$
$IMAGE85$
3) Среди корней есть кратные или одинаковые, в этом случае для группы кратных корней получаются сложные выражения, но если таких корней всего два, им в оригинале будет соответствовать такая запись:
$IMAGE86$
$IMAGE87$
Пример:
$IMAGE88$
$IMAGE89$
$IMAGE90$
$IMAGE91$
$IMAGE92$, $IMAGE93$
$IMAGE94$
$IMAGE95$
$IMAGE96$
Из примеров видно, что корню pх=0 в оригинале соответствует величина, которую в классическом методе называют принужденной составляющей. Используя все вышеизложенное, можно в таком порядке рассчитывать переходной процесс.
(1) В схеме до коммутации находят $IMAGE97$ и $IMAGE98$.
(2) Для схемы после коммутации записывают полную систему уравнений Кирхгофа и применяют к ней прямое преобразование Лапласа. В результате получают систему операторных уравнений.
(3) Из этой системы находят изображение искомой величины и переходят к оригиналу. Так обычно поступают, когда вся схема описывается одним уравнением. В сложных цепях этот путь не эффективен, так как он позволит убрать только один недостаток классического метода (поиск начальных условий). Второй недостаток – уравнения можно писать только по законам Кирхгофа – остался. Чтобы и его убрать, формулируют в операторной форме законы цепей и строят операторные схемы замещения.
3 Законы цепей в операторной форме
Применим к законам Кирхгофа для мгновенных значений прямое преобразование Лапласа.
$IMAGE99$
Пример:
В некоторой схеме для некоторого узла имеем уравнение: $IMAGE100$. Изображение источника легко находится (см. начало операторного метода). Например, если $IMAGE101$.
Пусть в некотором контуре выполняется уравнение:
$IMAGE102$, $IMAGE103$
$IMAGE104$.
Тогда применяя преобразования Лапласа, получим:
$IMAGE105$
$IMAGE106$
$IMAGE107$
$IMAGE108$
$IMAGE109$
4 Эквивалентные операторные схемы замещения
Анализ полученных выражений позволяет раз и навсегда нарисовать операторные схемы замещения элементов, из которых можно строить операторную схему замещения всей послекоммутационной схемы.
$IMAGE110$
Из примеров видно, что источник тока отображается изображением источника тока, а ЭДС – изображением источника ЭДС.
Если бы в схеме был управляемый источник $IMAGE111$, то $IMAGE112$. Аналогично с управляемым источником тока. Для учета взаимных индуктивностей можно поступить аналогично, при этом в схеме замещения появятся дополнительные источники ЭДС $IMAGE113$ и $IMAGE114$.
Если же до коммутации в индуктивностях тока не было (расчет переходной и импульсной характеристики, передаточной функции), то никаких дополнительных источников не появится, а просто надо будет по прежним правилам учитывать напряжение взаимной индукции.
Пример:
$IMAGE115$
$IMAGE116$
$IMAGE117$
С учетом сказанного, под операторным методом понимают такой порядок действий.
1) В схеме до коммутации рассчитывают $IMAGE97$ и $IMAGE119$.
2) Рисуют операторную схему замещения цепи после коммутации.
3) Самым эффективным методом находят изображение той величины, которую надо найти.
4) Переходят от изображения к оригиналу.
Список литературы:
1. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М.Милюков, В.П.Рынин; Под ред. В.П.Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)
2. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н.Зуб, С.М.Милюков. Рязань, 2005. 16 с.
3. Основы анализа и расчета линейных электрических цепей: Учеб. пособие/ Н.А.Кромова. –2-е изд., перераб. и доп.; Иван. гос. энерг. ун-т. –Иваново, 1999. -360 с.
4. Голубев А.Н. Методы расчета нелинейных цепей: Учеб. пособие/ Иван. гос. энерг. ун-т. –Иваново, 2002. -212 с.
5. Теоретические основы электротехники. / Г.И.Атабеков, С.Д.Купалян, А.В.Тимофеев, С.С.Хухриков.-М.: Энергия, 1979. 424 с.
6. М.Р.Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.