Среда, 05 Фев 2025, 20:16
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51657


Онлайн всего: 17
Гостей: 17
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Физика

К механизму электропроводности магнитной жидкости с графитовым наполнителем


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
02 Июн 2013, 06:09

К МЕХАНИЗМУ ЭЛЕКТРОПРОВОДНОСТИ МАГНИТНОЙ ЖИДКОСТИ    С ГРАФИТОВЫМ НАПОЛНИТЕЛЕМ

Р.Г. Закинян,      Ю.Л. Смерек,  А.Р. Закинян.

Введение. В работе [1] экспериментально исследовалась зависимость электропроводности магнитной жидкости с графитовым наполнителем от направления магнитного поля. Было установлено, что при направлении магнитного поля, совпадающем с направлением электрического поля, электрическая проводимость магнитной жидкости увеличивается. Если же магнитное поле перпендикулярно электрическому полю, то электрическая проводимость уменьшается. Это объясняется тем, что частички графита можно рассматривать как «магнитные дырки», которые в магнитном поле ориентируются вдоль силовых линий магнитного поля. Возникающая анизотропия магнитной жидкости с графитовым наполнителем является причиной зависимости электрической проводимости от направления магнитного поля.

В работе [2] была предложена теория, объясняющая наблюдаемую зависимость электрической проводимости от направления магнитного поля. Суть теории [2] заключается в следующем. Предполагается, что в магнитной жидкости всегда имеются примесные ионы, которые в результате адсорбции с частицами магнетита заряжают их. Поэтому электрический ток обусловлен движением заряженных частиц магнетита. Частицы же графита, помещенные в магнитную жидкость, оказывают сопротивление движению частиц магнетита. Если представить частицы графита в виде вытянутых эллипсоидов, то в результате ориентации в магнитном поле, частота столкновений частиц магнетита с частицами графита будет зависеть от направления магнитного поля. Это приводит к зависимости сопротивления (соответственно, проводимости) магнитной жидкости от направления магнитного поля.

Полученные в работе [2] зависимости электрической проводимости от направления магнитного поля давали несколько завышенные результаты по сравнению с экспериментом [1]. Поэтому сделан вывод, что предлагаемый в работе [2] механизм не полностью объясняет наблюдаемую в эксперименте зависимость. В работе [3] был предложен новый механизм, объясняющий зависимость проводимости магнитной жидкости с графитовым наполнителем от направления магнитного поля. Суть нового механизма заключалась в следующем.  Так как частицы магнетита являются проводящими, то в электрическом поле на них должен индуцироваться заряд противоположного знака. А это приведет к тому, что заряженные частицы магнетита будут притягиваться к частицам графита, компенсируя образовавшийся заряд. Таким образом, число частиц магнетита, обусловливающих электрический ток, уменьшается. Но степень этого уменьшения будет зависеть от ориентации частиц графита. Если частицы графита в целом электронейтральны, то электрическое поле около незаряженной частицы графита будет иметь симметричный вид, изображенный на рис. 1.


  

Рис. 1. Искажение электрического поля около незаряженной частицы графита.

Симметричное распределение силовых линий электрического поля есть следствие теоремы Гаусса (заряд равен нулю, поэтому число силовых линий подходящих к частице равно числу силовых линий исходящих из частицы).

Но если  частицы магнетита заряжены, то они будут стремиться присоединиться к противоположно заряженным сторонам частицы графиты. В результате этого частица графита заряжается. Поэтому согласно теореме Гаусса, электрическое поле около заряженной частицы графита принимает несимметричный вид, изображенный на рисунке 2.

   


Рис. 2. Искажение электрического поля около заряженной частицы графита.

Если предположить, что частицы графита могут принимать заряды разных знаков, то картина, изображенная на рисунке 2 не будет иметь места. Действительно, если представить магнитную жидкость в целом электронейтральной, то в ней объемный заряд равен нулю. То есть число положительно заряженных и отрицательно заряженных частиц магнетита одинаково. И будет иметь место картина, изображенная на рис. 1. Поэтому картина на рисунке 2 может возникнуть только лишь при униполярном заряжении частиц графита, то есть при наличии объемного заряда того или иного знака. Далее для определенности будем говорить об объемном заряде положительного знака.

Частицы графита, помещенные в магнитную жидкость, представляют собой «магнитные дырки», обладающие магнитным моментом, направленным против внешнего поля. При изменении магнитного поля частицы графита будут ориентироваться вдоль поля. Но если представить частицы графита в виде идеальных сфер, то, очевидно, что никакой анизотропии возникнуть не может. Поэтому анизотропию электрических свойств магнитной жидкости с графитовым наполнителем, можно объяснить, только если предположить, что частицы графита имеют эллипсоидальную форму (или произвольную вытянутую форму). 

В работе [3] при определении предельного заряда, который образуется на частице графита в результате адсорбции заряженных частиц магнетита, форма частиц графита считалась сферической. Целью настоящей статьи является – развить количественную теорию описанного выше механизма для частиц графита эллипсоидальной формы.

1. Магнитное поле параллельно электрическому полю. Предельный заряд, накапливающийся на частице графита, найдем из теоремы Гаусса [4]:

,                                                       (1)

где  - поток вектора электрической напряженности; Е – результирующее поле, обусловленное суперпозицией Е1 внешнего поля вблизи частицы графита и отталкивающего поля Е2, обусловленного накапливающими на частице графита зарядами;  – площадь поверхности графита (рис. 3). На рис. 3 $IMAGE6$ - напряженность невозмущенного электрического поля.  

$IMAGE7$



Рис. 3. К результирующему потоку вектора напряженности электрического поля.

Напряженность электрического поля Е1 вблизи поверхности проводящего эллипсоида, помещенного первоначально в однородное электрическое поле, определяется выражением [5]

$IMAGE8$,                                               (2)

где $IMAGE9$ – полуоси эллипсоида, причем полуось $IMAGE10$ направлена вдоль оси $IMAGE11$; $IMAGE12$ – декартовы координаты поверхности эллипсоида; $IMAGE13$ – коэффициент деполяризации, определяемый для вытянутого эллипсоида вращения ( $IMAGE14$) с эксцентриситетом $IMAGE15$, выражением [5]

$IMAGE16$,                                                       (3)

где $IMAGE17$ – обратный гиперболический тангенс: $IMAGE18$. Из (3) следует, что

$IMAGE19$,                                                                    (4)

то есть для проводящей сферы формула (2) принимает вид

$IMAGE20$,                                                        (5)

где $IMAGE21$ - радиус сферы. Если же сфера является диэлектриком, то в этом случае формула (5) имеет вид [5]

$IMAGE22$,                                                         (6)

где $IMAGE23$ – относительная диэлектрическая проницаемость сферы.  При $IMAGE24$ из (6) получается выражение (5) для проводящей сферы. Поэтому предлагаемый ниже механизм электропроводности можно применить и для случая с диэлектрическим наполнителем эллипсоидальной формы.

Накапливающиеся на проводящем эллипсоиде заряды порождают отталкивающее поле, препятствующее приходу новых заряженных частиц магнетита. Отталкивающее поле вблизи эллипсоида задается формулой [5]

$IMAGE25$,                                            (7)

где $IMAGE26$ – заряд, накапливающийся на поверхности эллипсоида; $IMAGE27$ – число заряженных частиц магнетита, несущих элементарный заряд $IMAGE28$. Для случая сферы формула (7) принимает вид

$IMAGE29$.                                             (8)

В результате суперпозиции получим результирующее поле, направленное перпендикулярно поверхности эллипсоида. Результирующее поле равно

$IMAGE30$.                     (9)

Причем $IMAGE31$ при $IMAGE32$

  $IMAGE33$.                                                (10)

Так как в формуле (2) выражение под корнем есть медленно меняющаяся функция, то можно ее приблизительно заменить средним значением:

$IMAGE34$.                                           (11)

Тогда выражения для $IMAGE35$ и $IMAGE36$ можно приближенно записать в виде

$IMAGE37$,                                                      (12)

$IMAGE38$.                                                (13)

Тогда для результирующего поля запишем

$IMAGE39$.                              (14)

Для нахождения потока вектора напряженности электрического поля по формуле (1), нам необходимо знать выражение для элемента площади поверхности эллипсоида вращения, которое согласно [6] имеет вид

$IMAGE40$.                                              (15)

С учетом (14) и (15) выражение (1) для потока вектора напряженности получим

$IMAGE41$.       (16)

Интегралы в формуле (16) элементарно интегрируются [7]:

$IMAGE42$

$IMAGE43$.                          (17)

$IMAGE44$.(18)

С учетом формул (17) и (18) выражение для потока вектора напряженности примет вид

$IMAGE45$

$IMAGE46$.                (19)

Упростим выражение (19), принимая во внимание, что $IMAGE47$.

$IMAGE48$.                        (20)

Насыщение частицы графита зарядом произойдет, когда поток вектора напряженности $IMAGE49$ станет равным нулю. То есть заряжение частиц графита будет происходить до тех пор, пока индуцированный заряд не будет скомпенсирован. Из условия $IMAGE50$ найдем предельный заряд частицы графита для случая, когда магнитное поле параллельно электрическому полю:

$IMAGE51$.                             (22)

Предельное число $IMAGE52$ заряженных частиц магнетита с элементарным зарядом e, отдающих заряд частице графита, в электрическом поле с напряженностью $IMAGE53$ равно: $IMAGE54$.

2. Магнитное поле перпендикулярно электрическому полю. Рассмотрим, что произойдет, если частица графита под действием магнитного поля будет ориентирована перпендикулярно электрическому полю. Как было отмечено выше, если частица графита представляет собой сферу, то никаких изменений не произойдет. Если частица графита представляет собой вытянутый эллипсоид, то она большей полуосью, а значит, большей площадью поперечного сечения, будет расположена перпендикулярно току.

 Пусть в результате такой ориентации полуось $IMAGE55$ эллипсоида параллельна оси $IMAGE11$. В этом случае напряженность электрического поля Е1 вблизи поверхности проводящего эллипсоида определяется выражением (2), в котором необходимо заменить $IMAGE10$ на $IMAGE55$

$IMAGE59$,                                             (23)

$IMAGE60$,     $IMAGE61$.                                 (24) 

Отталкивающее поле вблизи эллипсоида задастся формулой (7)

$IMAGE25$.                                            (25)

Результирующее поле запишется в виде

$IMAGE63$.                     (26)

Из условия $IMAGE31$ находим $IMAGE65$:

$IMAGE66$.                                           (27)

Аналогично, запишем приближенные выражения для $IMAGE35$ и $IMAGE36$ в виде

$IMAGE69$,                                                      (28)

$IMAGE70$.                                                (29)

Для результирующего поля запишем

$IMAGE71$.                              (30)

Выражение для элемента площади поверхности эллипсоида вращения в этом случае имеет вид

$IMAGE72$.                                              (31)

Поток вектора напряженности электрического поля в этом случае определится формулой

$IMAGE73$.                   (32)

Из условия $IMAGE50$ найдем предельный заряд частицы графита для случая, когда магнитное поле перпендикулярно электрическому полю:

$IMAGE75$.                             (33)

Введем следующие обозначения

$IMAGE76$,          $IMAGE77$,      (34)

которые назовем коэффициентами формы, соответственно, для эллипсоида, расположенного параллельно току, и перпендикулярно току. Тогда выражения для предельных зарядов, соответственно, запишутся в виде

$IMAGE78$,                                              (35)

$IMAGE79$.                                           (36)

         Расчеты по формулам (35) и (36) показывают, что $IMAGE80$. Таким образом, частица графита ориентированная перпендикулярно электрическому полю заряжается больше, чем в случае, когда она ориентирована параллельно электрическому полю. Это приводит к уменьшению основного тока.

         3. Удельная проводимость магнитной жидкости с графитовым наполнителем. Если бы описанный выше механизм не имел бы место, то невозмущенный ток можно записать, согласно определению [4], в виде

$IMAGE81$,                                                           (37)

где $IMAGE82$– плотность невозмущенного тока; $IMAGE83$– площадь обкладок ячейки [1]. Плотность тока записывается в виде [4]

$IMAGE84$,                                                    (38)

где $IMAGE85$ – концентрация заряженных частиц магнетита в невозмущенном потоке; $IMAGE86$– удельная проводимость магнитной жидкости при отсутствии частиц графита; $IMAGE87$ – скорость упорядоченного движения заряженных частиц магнетита. Отсюда удельную проводимость записывают в виде [4]

$IMAGE88$,       $IMAGE89$,                               

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Физика | Добавил: Lerka
Просмотров: 207 | Загрузок: 3 | Комментарии: 2 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Среда
05 Фев 2025
20:16


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz