- Происхождение и история развития систем счисления
1.1 Границы счета
На ранних ступенях развития общества люди почти не умели считать. Они отличали друг от друга совокупности двух и трех предметов; всякая совокупность, содержавшая большее число предметов, объединялась в понятии «много». Это был еще не счет, а лишь его зародыш. Впоследствии способность различать друг от друга небольшие совокупности развивалась; возникли слова для обозначений понятий «четыре», «пять», «шесть», «семь». Последнее слово длительное время обозначало также неопределенно большое количество. Наши пословицы сохранили память об этой эпохе («семь раз отмерь – один раз отрежь», «у семи нянек дитя без глазу», «семь бед – один ответ» и т.д.). С усложнением хозяйственной деятельности людей понадобилось вести счет в более обширных пределах. Для этого человек пользовался окружавшими его предметами, как инструментами счета: он делал зарубки на палках и на деревьях, завязывал узлы на веревках, складывал камешки в кучки и т.п. Такой вид счета носит название унарной системы счисления, т.е. система счисления, в которой для записи числа применяется только один вид знаков. Это удобно, так как сразу визуально определяется количество знаков и сопоставляется с количеством предметов, которые эти знаки обозначают. Все мы ходили в первый класс и считали там на счетных палочках – это отзвук той далекой эпохи. Кстати, от счета с помощью камешков ведут свое начало различные усовершенствованные инструменты, как, например, русские счеты, китайские счеты («сван-пан»), древнеегипетский «абак» (доска, разделенная на полосы, куда клались жетоны). Аналогичные инструменты существовали у многих народов. Более того, в латинском языке понятие «счет» выражается словом «calculatio» (отсюда наше слово «калькуляция»); а происходит оно от слова «calculus», означающего «камешек». Особо важную роль играл природный инструмент человека – его пальцы. Этот инструмент не мог длительно хранить результат счета, но зато всегда был «под рукой» и отличался большой подвижностью. Язык первобытного человека был беден; жесты возмещали недостаток слов, и числа, для которых еще не было названий, «показывались» на пальцах. Поэтому, вполне естественно, что вновь возникавшие названия «больших» чисел часто строились на основе числа 10 – по количеству пальцев на руках; у некоторых народов возникали также названия чисел на основе числа 5 – по количеству пальцев на одной руке или на основе числа 20 – по количеству пальцев на руках и ногах. На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение. На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион. На современном этапе границы счета определены термином «бесконечность», который не обозначает какое либо конкретное число.
1.2 Десятичная система счисления
В современном русском языке, а также в языках других народов названия всех чисел до миллиона составляются из 37 слов, обозначающих числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 (например, восемьсот пятнадцать тысяч триста девяносто четыре). В свою очередь названия этих 37 чисел, как правило, образованы из названий чисел первого десятка (1, 2, 3, 4, 5, 6, 7, 8, 9) и чисел 10, 100, 1000 (например, 18 = восемь на десять, 30 = тридесять и т.д.). В основе этого словообразования лежит число десять, и поэтому наша система наименований называется десятичной системой счисления. Из упомянутого правила в разных языках имеются различные исключения, объясняющиеся историческими особенностями развития счета. В русском языке единственным исключением является наименование «сорок». Это исключение можно поставить в связь с тем, что число 40 играло некогда особую роль, означая неопределенно большое количество. В тюркских языках (узбекском, казахском, татарском, башкирском, турецком и др.) исключение составляют наименования чисел 20, 30, 40, 50, тогда как названия чисел 60, 70, 80, 90 образованы из наименований для 6, 7, 8, 9. Во французском языке сохранились недесятичные названия чисел 20 и 80, причем 80 именуется quatrevingt, т.е. «четыре двадцать». Здесь мы имеем остаток древнего двадцатеричного счисления (по числу пальцев на руках и ногах). В латинском языке наименование числа 20 тоже недесятичное (viginti). Наименования чисел 18 и 19 образованы из названия 20 с помощью вычитания: 20–2 и 20–1 (duodeviginti, undeviginti, т.е. «два от двадцати», «один от двадцати»).
1.3 Развитие понятия числа
При счете отдельных предметов единица есть наименьшее число; делить ее на доли не нужно, а часто и невозможно (при счете камней прибавление к двум камням половины третьего дает три камня, а не два с половиной). Однако делить единицу на доли приходится уже при грубых измерениях величин, например при измерении длины шагами (два с половиной шага и т.д.). Поэтому уже в отдаленные эпохи создалось понятие дробного числа. Так, в вавилонской системе мер веса (и денег) 1 талант составлял 60 мин, а одна мина – 60 шекелей. Соответственно с этим в вавилонской математике широко употреблялись шестидесятиричные дроби. В древнеримской весовой (и денежной) системе 1 асс делился на 12 унций; сообразно с этим римляне пользовались двенадцатиричными дробями. Наши «обыкновенные дроби» широко употреблялись древними греками и индийцами. Правила действий с дробями, изложенные индийским ученым Брамагуптой (VIII век н.э.), лишь немногим отличаются от наших. Наша запись дробей тоже совпадает с индийской; только дробной черты индийцы не писали; греки записывали сверху знаменатель, а снизу числитель. Индийской обозначение дробей и правила действий над ними были усвоены в IX веке в мусульманских странах благодаря узбекскому ученому Мухаммеду Хорземскому (аль-Хваризми). Они были перенесены в Западную Европу итальянским купцом и ученым Леонардо Фибоначчи из Пизы (XIII век). Наряду с «обыкновенными» дробями до XVII века применялись (преимущественно в астрономии) шестидесятиричные дроби. Они были вытеснены десятичными дробями, введенными голландским купцом и выдающимся инженером-ученым Симоном Стевином (1548 - 1620). В дальнейшем оказалось необходимым еще больше расширить понятие числа; последовательно появились числа иррациональные, отрицательные и комплексные. Довольно поздно к семье чисел присоединился нуль. Первоначально слово «нуль» означало отсутствие числа (буквальный смысл латинского слова nullum – «ничто»). Для того чтобы это «ничто» считать числом, появились основания лишь в связи с рассмотрением отрицательных чисел. 1.4 Системы нумерации некоторых народов
1.4.1 Древнегреческая нумерация
В древнейшее время в Греции была распространена т.н. аттическая нумерация. Числа 1, 2, 3, 4 обозначались черточками , , , . Число 5 записывалось знаком (древнее начертание буквы «пи», с которой начинается слово «пенте» – пять); числа 6, 7, 8, 9 обозначались , , , . Число 10 обозначалось (начальной буквой слова «дека» – десять). Числа 100, 1000 и 10000 обозначались , , . Числа 50, 500, 5000 обозначались комбинациями знаков 5 и 10, 5 и 100, 5 и 1000. Общую запись чисел в аттической нумерации иллюстрирует пример 1.1.
Пример 1.1 Запись чисел в аттической системе счисления
-
В третьем веке до н.э. аттическая нумерация была вытеснена так называемой ионийской системой. В ней числа 1 – 9 обозначались первыми девятью буквами алфавита; числа 10, 20, 30, … , 90 – следующими девятью буквами; числа 100, 200, … , 900 – последними девятью буквами.
Таблица 1.1 Обозначение чисел в ионийской системе нумерации
Обозна- Чение | Название | Значе-ние | Обозна-чение | Название | Значе-ние | Обозна-чение | Назва-ние | Значе-ние | | Альфа | 1 | | Йота | 10 | | Ро | 100 | | Бета | 2 | | Каппа | 20 | | Сигма | 200 | | Гамма | 3 | | Лямбда | 30 | | Тау | 300 | | Дельта | 4 | | Мю | 40 | | Ипсилон | 400 | | Эпсилон | 5 | | Ню | 50 | | Фи | 500 |
| Фауб | 6 | | Кси | 60 | | Хи | 600 | | Дзета | 7 | | Омикрон | 70 | | Пси | 700 | | | | | | |
> > > > > >
> > > > > >
|