В историческом плане, примерно начиная с 1807 г., понятие «энергия» стало постепенно выделяться из многозначного понятия «сила». Особенно активно это понятие стало звучать в тот период, когда «движущая сила огня» начала использоваться в паровых машинах, где тепло от сжигаемого угля превращалось в механическую работу поршня, который перемещался под давлением пара. Несколько ранее интенсивность движения тел оценивали «живой силой» - произведением массы тела m на квадрат скорости w его движения mw2. В 1829 г. француз Г. Кориолис уточняет выражение живой силы, поделив его пополам - mw2/2.
Несколько позднее энергию движущей силы стали называть кинетической, а энергию системы, приведенной в «напряженное» состояние - камень поднят над землей и т. п., - потенциальной. К середине ХIХ века получил обоснование закон сохранения количества энергии при взаимопревращении ее видов в изолированных системах – первый закон природы, который точнее можно определить так: нельзя получить что-либо, не оплачивая это. В этот же период в полной мере осознается выдающаяся роль энергии в жизни и развитии человеческого общества, за что присваивают ей романтический титул «царицы мира». Естественно, в этот период появились и научные определения энергии. Приведем здесь только одно из многочисленных определений, которое принадлежит Ф. Энгельсу: «энергия - это общая скалярная (не зависящая от направления, не векторная. – Авторы) мера различных форм движения материи». Заметив, что все виды энергии превращаются в тепло, которое, переходя к более холодным телам, в конечном итоге рассеивается в окружающей среде, излучаясь затем в мировое пространство. Ученые в результате обнаружили «тень» энергии - энтропию - меру рассеяния энергии. По мере изучения этого явления Р. Клаузиусом и другими был сформулирован новый закон - закон снижения качества энергии (возрастания энтропии), ставший позже вторым законом термодинамики: какие бы изменения ни происходили в реальных изолированных системах, они всегда ведут к увеличению энтропии (невозможно помешать выравниванию энергии).
Развитие учения об энергии и ее превращениях неоднократно сопровождалось попытками создания теорий и принципов работы оборудования, выходящих за рамки упомянутых выше первого и второго начал термодинамики. Наиболее интересные из них следующие. Разработка вечного двигателя (перпетуум-мобиле). Различалось два вида двигателей. Вечный двигатель первого рода можно определить как воображаемую, непрерывно-действующую машину, которая, будучи как-то запущенной, совершила работу без получения энергии извне. Потребовалось длительное время, чтобы человечество убедилось в неосуществимости реализации такой машины, так как ее принцип работы противоречит закону сохранения и превращения энергии.
Вечный двигатель второго рода – воображаемая тепловая машина, которая в результате совершения кругового процесса (цикла) полностью преобразует теплоту, получаемую от какого-то «неисчерпаемого» источника (океана, атмосферы и т.п.), в работу. Данный принцип также не может быть реализован, так как противоречит уже второму началу термодинамики.
Но, пожалуй, наиболее впечатляющей была теория все того же Р. Клаузиуса – теория «тепловой смерти Вселенной». Он попытался распространить положения второго начала термодинамики на всю Вселенную. Согласно этим утверждениям, через какой-то достаточно длительный промежуток времени вся энергия, имеющаяся на Земле и в других частях Вселенной превратится в теплоту, а равномерное распределение последней между всеми телами Земли и Вселенной приведет к выравниванию каких бы то ни было превращений энергии. Данная «теория» была опровергнута рядом исследователей, в том числе Л. Больцманом в 1872 г. Он на основе молекулярно-кинетической теории продемонстрировал, что закон возрастания энтропии неприменим к Вселенной, потому что он справедлив только для статистических систем, состоящих из большого числа хаотически движущихся объектов, поведение которых, определяемое изменением параметров состояния (например, для газов - давление, температура, удельный объем), подчиняется законам теории вероятностей. Возрастание энтропии таких систем указывает лишь наиболее вероятное направление протекания процессов.
В период опровержения теории тепловой смерти Вселенной немецкий физикохимик В.Нернст предположил, что с приближением абсолютной температуры к нулю энтропия тоже стремится к нулю, что впоследствии стало третьим законом термодинамики. Основываясь на этом законе, за нулевую точку отчета энтропии любой системы можно принимать ее максимальное упорядоченное состояние.
Эти три закона и молекулярно-кинетическая теория составляют основу термодинамики, которая в настоящее время рассматривается как самая универсальная и строго логическая научная дисциплина.