Магнитные явления были известны ещё в древнем мире: компас был изобретён более 4000 лет назад, и к XII веку он стал известен в Европе. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.
Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется связь, были опыты датского физика Х.Эрстеда (1777-1851). В своём знаменитом опыте, описываемом ныне во всех школьных учебниках физики и проведённом в 1820 году, он обнаружил, что провод, по которому идёт ток, действует на магнитную стрелку (то есть подвижный магнит).
Эрстед не только провёл свой опыт, но и сделал правильный вывод: «электрический конфликт не ограничен проводящей проволокой, а имеет довольно обширную сферу активности вокруг этой проволоки». Переводя на современный язык, это можно понимать так: «действие тока есть не только внутри провода (его нагревание), но и вокруг (магнитное поле)».
Открытие Эрстеда вызвало необычайный интерес его современников-физиков и послужило началом ряда исследований, показавших сходство магнитного действия тока и действия постоянного магнита. У многих возникал вопрос: а существует ли обратное действие, то есть постоянного магнита на проводник с током? Для поиска ответа проделаем опыт.
Положим на стол полосовой магнит, а над ним подвесим прямой жёсткий проводник на гибких проводах, подводящих ток, но дающих вместе с тем возможность проводнику поворачиваться (рис «а»). Как только мы подключим источник тока, проводник развернётся перпендикулярно к магниту (рис «б»). Другой вариант этого же опыта. Гибкий провод подвешен рядом с вертикально закреплённым магнитом (рис «в»). Когда по проводу идёт ток, то на каждый участок провода действует сила, разворачивающая его перпендикулярно к магниту (рис «г»). Поэтому провод и обвивается вокруг магнита, указывая на «круговой» характер магнитного поля.
Французский физик Ф.Араго (1786-1853) провёл серию своих опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только был включён ток, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Так был изобретён электромагнит – устройство, создающее сильное магнитное поле.
Открытие Ф.Араго заинтересовало его соотечественника А.Ампера (1775-1836), и он провёл опыты с параллельными проводниками с токами и обнаружил их взаимодействие (см. рисунок). Ампер показал, что если в проводниках идут токи одинаковых направлений, то такие проводники притягиваются друг к другу (левая часть рисунка). В случае же токов противоположных направлений, их проводники отталкиваются (правая часть рисунка). Как же объяснить такие результаты?
Во-первых, нужно было догадаться, что в пространстве, которое окружает постоянные токи и постоянные магниты, возникают силовые поля, называемые магнитными. Для их графического представления изображают силовые линии – это такие линии, в каждой точке которых магнитная стрелка, помещённая в поле, располагается по касательной к этой линии. Эти линии изображают более «густыми» или более «редкими» в зависимости от значения силы, действующей со стороны магнитного поля.
Во-вторых, нужно было проделать опыты и понять, что силовые линии прямого проводника с током представляют собой концентрические (расходящиеся от общего центра) окружности. Силовые линии можно «увидеть», если проводники пропустить сквозь стекло, на которое насыпать мелкие железные опилки. Более того, нужно было догадаться «приписать» силовым линиям определённое направление в зависимости от направления тока в проводнике. То есть ввести в физику «правило буравчика» или, что то же самое, «правило правой руки», см. рисунок ниже.
В-третьих, нужно было проделать опыты и ввести в физику «правило левой руки», чтобы определять направление силы, действующей на проводник с током, помещённый в магнитное поле, расположение и направление силовых линий которого известно. И лишь после этого, дважды воспользовавшись правилом правой руки и четырежды правилом левой руки, можно было объяснить опыт Ампера.
Силовые линии полей параллельных проводников с током представляют собой концентрические окружности «расходящиеся» вокруг каждого проводника, в том числе туда, где находится второй проводник. Поэтому на него действует магнитное поле, созданное первым проводником, и наоборот: магнитное поле, созданное вторым проводником, достигает первого и действует на него. Направление силовых линий определяется про правилу правой руки, а направление воздействия на проводник – по правилу левой руки.
Остальные, ранее рассмотренные опыты, объясняются аналогично: вокруг магнитов или проводников с током существует магнитное поле, по расположению силовых линий которого можно судить о направлении и величине магнитного поля, а также о том, как оно действует на проводники.