Пресса с завидной регулярностью пестрит громкими заголовками об открытиях, которые сулят нам светлое «бескремниевое» будущее электроники. Помимо графена, свойства которого активно изучаются уже много лет, предлагаются самые разнообразные материалы в качестве замены кремния. В наших «Научных дайджестах» этой теме также уделяется достаточно много внимания. Вспомнить хотя бы публикации о прототипе транзистора Мотта на основе диоксида ванадия или открытии интересных свойств двумерного полупроводникового материала — бисульфида молибдена.
Как показали результаты исследования ученых из Университета штата Нью-Йорк в Буффало (University at Buffalo), оксидная ванадиевая бронза с двухвалентным свинцом ?-Pb0,33V2O5 также имеет перспективы использования в электронике. Результаты исследования опубликованы в работе под названием Charge Disproportionation and Voltage-Induced Metal-Insulator Transitions Evidenced in ?-PbxV2O5 Nanowires в недавнем выпуске журнала Advanced Functional Materials (DOI: 10.1002/adfm.201201513/). Отметим, поиск материалов, которые в будущем могут заменить кремний, является одним из приоритетных направлений исследований этой группы американских ученых.
Особенность полученного учеными материала заключается в его способности переключаться между фазовыми состояниями «проводник» и «изолятор» при комнатной температуре (это свойство впервые замечено для материалов такого типа, что представляет интерес для дальнейших исследований). Для такого переключения достаточно воздействия электрического поля. При подаче напряжения нанонити превращаются из изолятора с высоким сопротивлением (такое состояние можно интерпретировать в бинарном коде как «0») в материал с металлическими свойствами («1»), легко проводящий электричество. Интересно, что такие полупроводниковые свойства ?-Pb0,33V2O5 проявляет только в особой наноструктурной форме. В публикации утверждается, что нанонити из оксидной ванадиевой бронзы отличаются более высокими скоростями переключения по сравнению с приборами на основе кремния.
<div style="text-align: center;"></div>
Кристаллическая структура ?-Pb0,33V2O5
Нанонити ?-Pb0,33V2O5 были синтезированы с помощью гидротермической реакции ацетата свинца с оксидной ванадиевой пудрой V2O5. Полученное вещество в стехиометрическом состоянии (в виде смеси) было помещено в герметичный автоклав с добавлением 16 мл воды. Далее смесь нагревали при температуре 250 градусов Цельсия на протяжении 72 часов. Затем смесь была отфильтрована вакуумом, очищена небольшим количеством воды и высушена на воздухе. Таким способом исследователям удалось получить нанонити длиной более 100 мкм.
Проведённые эксперименты показали зависимость напряжения, при котором происходит фазовое переключение материала, от температуры. При температуре 152 градуса по Кельвину переход в проводящее состояние происходил при напряжении около 4,8 В. Для обратного переключения напряжение было снижено до 3 В. Повышение температуры уменьшало пороговое значение напряжения, которое инициировало смену фазового состояния. Уже при 195 градусах по Кельвину оно составляло около 4 В. Для защиты материала от сильного нагревания ток был ограничен значением 250 мА.
<div style="text-align: center;"></div>
Вольт-амперная характеристика нанонитей
Что касается перспектив внедрения данной разработки, то пока всё слишком туманно. Сами учёные сейчас лишь любуются интересными свойствами нанонитей и говорят об их возможном применении в электронике будущего. Кроме того, есть ещё один подводный камень. Исследуемый материал содержит соединения свинца, и его потенциально вредное воздействие на здоровье человека и окружающую среду ещё предстоит тщательно изучить.
Первое успешное выращивание полупроводников на графите и графене
С гораздо большей уверенностью о перспективности своей разработки говорят исследователи из Норвежского университета науки и технологии (NTNU). В отличие от предыдущей заметки, в которой говорится лишь о потенциальной возможности использовать интересные свойства некоего (даже, возможно, опасного для здоровья) материала, новость о выращивании полупроводников на графите и графене кажется куда более практичной и близкой к реальности. По крайней мере ученые уже успели запатентовать технологию выращивания нанонитей из арсенида галлия (GaAs) на графите и графеновой основе (подано примерно пять заявок на патенты).
Полученный гибридный материал отличается полезными свойствами, которые можно использовать в электронике. Профессор NTNU Хельге Веман (Helge Weman) отмечает превосходные оптоэлектронные свойства нового материала. Интересно, что он является также главным техническим директором и одним из основателей компании CrayoNano AS, которая создана специально для коммерциализации разработки. Среди главных достоинств электрода на основе нового материала господин Веман называет его низкую себестоимость, прозрачность, а также гибкость.
<div style="text-align: center;"></div>
Руководство компании CrayNano AS
Для тех, кто любит технические детали, приведём несколько найденных в соответствующей научной публикации подробностей о новой технологии. Для выращивания полупроводников на так называемом киш-графите (высокоориентированный пиролитический графит) основа была сперва очищена ацетоном и этанолом. Температура роста составила 540 градусов Цельсия. В случае с многослойным графеном (4-5 слоёв) в качестве основы был взят эпитаксиально выращенный на карбиде кремния графен. Эпитаксиальный рост графена проводился при температуре 2000 градусов Цельсия и давлении 1 атм. Для выращивания полупроводниковых структур использовались такие же параметры, как и для графитовой основы.
<div style="text-align: center;"></div>
Изображение GaAs-нанонитей, выращенных на графите
<div style="text-align: center;">$IMAGE6$</div>
Изображение GaAs-нанонитей, выращенных на графене
Полупроводниковые нанонити были нанесены на графитовые основы с использованием так называемого механизма самостоятельно катализирующегося роста структур «пар-жидкость-кристалл» (ПЖК). Использование этой техники позволило получить структуры правильной гексагональной формы, при этом нанонити имели одинаковые длину и диаметр.
<div style="text-align: center;">$IMAGE7$</div>
Расположение атомов Ga или As в плоскости над решёткой графена
В рамках исследований ученые также создали прототип фотодетектора на основе гибридного материала, который продемонстрировал высокие качественные характеристики. Среди других потенциальных приложений, где может найти применение технология компании CrayoNano AS, отмечаются фотогальванические элементы, светодиоды, термо- и пьезоэлектрические приборы, 3D-микросхемы.
Подробнее о новой технологии можно почитать в статье Vertically Aligned GaAs Nanowires on Graphite and Few-Layer Graphene, DOI: 10.1021/nl3018115.