Воскресенье, 19 Май 2024, 21:36
Uchi.ucoz.ru
Меню сайта
Форма входа

Категории раздела
Авиация и космонавтика [0]
Административное право [0]
Арбитражный процесс [0]
Архитектура [0]
Астрология [0]
Астрономия [0]
Банковское дело [0]
Безопасность жизнедеятельности [1930]
Биографии [0]
Биология [2350]
Биология и химия [0]
Биржевое дело [78]
Ботаника и сельское хоз-во [0]
Бухгалтерский учет и аудит [4894]
Валютные отношения [0]
Ветеринария [0]
Военная кафедра [0]
География [2269]
Геодезия [0]
Геология [0]
Геополитика [46]
Государство и право [13375]
Гражданское право и процесс [0]
Делопроизводство [0]
Деньги и кредит [0]
Естествознание [0]
Журналистика [660]
Зоология [0]
Издательское дело и полиграфия [0]
Инвестиции [0]
Иностранный язык [0]
Информатика [0]
Информатика, программирование [0]
Исторические личности [0]
История [6878]
История техники [0]
Кибернетика [0]
Коммуникации и связь [0]
Компьютерные науки [0]
Косметология [0]
Краеведение и этнография [540]
Краткое содержание произведений [0]
Криминалистика [0]
Криминология [0]
Криптология [0]
Кулинария [923]
Культура и искусство [0]
Культурология [0]
Литература : зарубежная [2115]
Литература и русский язык [0]
Логика [0]
Логистика [0]
Маркетинг [0]
Математика [2893]
Медицина, здоровье [9194]
Медицинские науки [100]
Международное публичное право [0]
Международное частное право [0]
Международные отношения [0]
Менеджмент [0]
Металлургия [0]
Москвоведение [0]
Музыка [1196]
Муниципальное право [0]
Налоги, налогообложение [0]
Наука и техника [0]
Начертательная геометрия [0]
Оккультизм и уфология [0]
Остальные рефераты [0]
Педагогика [6116]
Политология [2684]
Право [0]
Право, юриспруденция [0]
Предпринимательство [0]
Промышленность, производство [0]
Психология [6212]
психология, педагогика [3888]
Радиоэлектроника [0]
Реклама [910]
Религия и мифология [0]
Риторика [27]
Сексология [0]
Социология [0]
Статистика [0]
Страхование [117]
Строительные науки [0]
Строительство [0]
Схемотехника [0]
Таможенная система [0]
Теория государства и права [0]
Теория организации [0]
Теплотехника [0]
Технология [0]
Товароведение [21]
Транспорт [0]
Трудовое право [0]
Туризм [0]
Уголовное право и процесс [0]
Управление [0]
Управленческие науки [0]
Физика [2737]
Физкультура и спорт [3226]
Философия [0]
Финансовые науки [0]
Финансы [0]
Фотография [0]
Химия [1714]
Хозяйственное право [0]
Цифровые устройства [34]
Экологическое право [0]
Экология [1778]
Экономика [0]
Экономико-математическое моделирование [0]
Экономическая география [0]
Экономическая теория [0]
Этика [0]
Юриспруденция [0]
Языковедение [0]
Языкознание, филология [1017]
Новости
Чего не хватает сайту?
500
Статистика
Зарегистрировано на сайте:
Всего: 51636


Онлайн всего: 4
Гостей: 4
Пользователей: 0
Яндекс.Метрика
Рейтинг@Mail.ru

База рефератов


Главная » Файлы » База рефератов » Математика

Доказательство теоремы о представлении дзета-функции Дедекинда


Гость, для того чтобы скачать БЕСПЛАТНО ПОЛНУЮ ВЕРСИЮ РЕФЕРАТА, Вам нужно кликнуть по любой ссылке после слова оплачиваемая реклама.
09 Апр 2013, 20:38

Содержание

Введение

Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле

Глава 2. Вывод функционального уравнения дзета-функции Дедекинда

Заключение

Список используемой литературы

Введение

В данной работе мы рассмотрим теорему о представлении дзета-функции Дедекинда в виде произведения L-функций и пример приложения этой теоремы к выводу функционального уравнения дзета-функции Дедекинда.

Определим некоторые понятия. Пусть k - конечное расширение поля Q, a - некоторый главный идеал поля k. Рассмотрим его разложение на простые идеалы

где    для почти всех p.

Через N (a) обозначим абсолютную норму идеала a, т.е. Определим дзета-функцию Дедекинда :

$IMAGE6$  $IMAGE7$

Кроме того каждому характеру сопоставим L-ряд

$IMAGE8$


Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле

Докажем следующую теорему

Теорема. Пусть K - конечное абелево расширение поля k; тогда

$IMAGE9$

где произведение справа распространяется на все примитивные характеры, согласованные с характерами группы классов $IMAGE10$ где S - исключительное множество в k, $IMAGE11$ - группа всех идеалов поля k, взаимно простых с S, $IMAGE12$ - подгруппа конечного индекса, образованная теми элементами из $IMAGE13$, которые содержат нормы относительно k идеалов из K, взаимно простых с S, $IMAGE13$ - подгруппа в подгруппе главных идеалов в $IMAGE11$, состоящая из таких главных идеалов $IMAGE16$, для которых $IMAGE17$и $IMAGE18$

Доказательство проводится в терминах локальных множителей, причем мы рассмотрим по отдельности неразветвленный и разветвленный случаи.

1. Пусть p - неразветвленный простой идеал из k, т.е.

$IMAGE19$

где $IMAGE20$ - различные простые идеалы в K. Согласно теории полей классов,

$IMAGE21$ где $IMAGE22$

Поэтому соответствующий локальный множитель слева равен

$IMAGE23$

в то время как соответствующий локальный множитель справа равен

$IMAGE24$

Ввиду того, что f - наименьшее положительное число такое, что $IMAGE25$ для всех $IMAGE26$, имеет место следующее легко проверяемое тождество

$IMAGE27$

отсюда, если положить $IMAGE28$, следует нужное равенство.

2. Доказательство для разветвленных простых идеалов сложнее и использует функциональные уравнения, которым удовлетворяют различные L-функции. Начнем с равенства

$IMAGE29$

и докажем, что функция $IMAGE30$тождественно равна единице. $IMAGE30$равна произведению конечного числа выражений вида

$IMAGE32$

соответствующих разветвленным идеалам p.

теорема дзета функция дедекинд

Если это произведение непостоянно, оно имеет полюс или нуль в некоторой чисто мнимой точке $IMAGE33$, где $IMAGE34$. В силу функционального уравнения $IMAGE35$представляет собой отношение гамма-функций и, следовательно, имеет только вещественные нули и полюсы. Поэтому $IMAGE36$, также является полюсом или нулем функции g. Мы знаем, однако, что $IMAGE36$ не является нулем или полюсом ни для L-рядов, ни для функций $IMAGE38$. Следовательно, g постоянна, а именно равна 1.

Глава 2. Вывод функционального уравнения дзета-функции Дедекинда

Пусть k=Q, K=Q ( $IMAGE39$), где $IMAGE39$ - первообразный корень из 1 степени m, $IMAGE41$. Тогда

$IMAGE42$ (1)

где $IMAGE43$ - дзета-функция Римана, $IMAGE44$ - L-функция Дирихле, произведение справа распространяется на все неглавные рациональные характеры по модулю m.

Выведем функциональное уравнение $IMAGE38$

Воспользуемся функциональным уравнением для $IMAGE44$:

$IMAGE47$,

где $IMAGE48$сумма Гаусса. Воспользуемся (1), получим

$IMAGE49$,

$IMAGE50$,

используя свойство сумм Гаусса, получим

$IMAGE51$,

$IMAGE52$.

Пусть для любого вещественного характера $IMAGE53$, тогда

$IMAGE54$,

$IMAGE55$.

Известно, что для каждого комплексного характера существует сопряжённый, тогда получим

$IMAGE56$,

$IMAGE57$,

$IMAGE58$,

$IMAGE59$.

Используя функциональное уравнение для дзета-функции Римана:

$IMAGE60$

получим

$IMAGE61$

$IMAGE62$

где D - дискриминант поля K.

Таким образом мы получили функциональное уравнение для дзета-функции Дедекинда в случае, когда k=Q, K=Q ( $IMAGE39$).


Заключение

В данной работе мы доказали теорему о представлении дзета-функции Дедекинда в виде произведения L-функций и с помощью этой теоремы вывели функциональное уравнение дзета-функции Дедекинда в случае k=Q, K=Q ( $IMAGE39$), где $IMAGE39$ - первообразный корень из 1 степени m.


Список используемой литературы

1. Касселс Дж., Фрёлих А. Алгебраическая теория чисел. - М., "Мир", 1969, с.328 - 330

***** Скачайте бесплатно полную версию реферата !!! *****
Категория: Математика | Добавил: Lerka
Просмотров: 153 | Загрузок: 1 | Рейтинг: 0.0/0 | Жаловаться на материал
Всего комментариев: 0
html-cсылка на публикацию
BB-cсылка на публикацию
Прямая ссылка на публикацию
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Профиль
Воскресенье
19 Май 2024
21:36


Вы из группы: Гости
Вы уже дней на сайте
У вас: непрочитанных сообщений
Добавить статью
Прочитать сообщения
Регистрация
Вход
Улучшенный поиск
Поиск по сайту Поиск по всему интернету
Наши партнеры
Интересное
Популярное статьи
Портфолио ученика начальной школы
УХОД ЗА ВОЛОСАМИ ОЧЕНЬ ПРОСТ — ХОЧУ Я ЭТИМ ПОДЕЛИТ...
Диктанты 2 класс
Детство Л.Н. Толстого
Библиографический обзор литературы о музыке
Авторская программа элективного курса "Практи...
Контрольная работа по теме «Углеводороды»
Поиск
Учительский портал
Используются технологии uCoz